
Kamila Szewczyk

An introduction to functional and
array programming

2021 - 2023

Abstract

This book means to serve as an introduction to functional and array programming using
KamilaLisp, a Lisp-inspired dynamically typed programming language. KamilaLisp bor-
rows many ideas from Haskell, Standard ML, APL, Scheme and others. It is a functional
programming language with a strong emphasis on array programming, designed to be used
in a wide range of applications.

Foreword

KamilaLisp, the language described in the book, originates from its previous iterations -
v0.1 and MalbolgeLISP. The first iteration of MalbolgeLISP (v1.0) was released in August
2020 and had very few features that distinguish KamilaLisp today. The second iteration of
MalbolgeLISP (v1.1) was released in July 2021 and was the subject of much attention due to
its unusual choice of implementation language. The final MalbolgeLISP (v1.2) was released
in September 2021, sharing many ideas and features with KamilaLisp. Unfortunately, the
effort required to implement it continued to grow. The codebase was becoming increasingly
disorganised and difficult to maintain. In addition, implementing new complicated features
was increasingly difficult due to the choice of implementation language. The first version of
KamilaLisp, a MalbolgeLISP-inspired Lisp dialect, appeared in December 2021, featuring
lazy evaluation, sophisticated numerical and symbolic operations and many original design
choices borrowed from MalbolgeLISP. It is beneficial if the reader has some prior knowledge
of the APL programming language (however, it is unnecessary to understand the book to
its fullest). The book was written in hopes of being helpful to the determined reader to
learn about the intricacies of functional and array programming.

3

Contents

1. Initial considerations . 9
1.1. Programs and variables . 9
1.2. Functions and lambda expressions . 11
1.3. Conditional expressions and comparisons . 13
1.4. Recursive functions . 14
1.5. Function composition . 16
1.6. Partial application and µ-recursive functions 18
1.7. Iteration . 20
1.8. Exceptions . 23

2. Elementary data structures . 25
2.1. Basic list operations . 25
2.2. Sorting, searching and indexing . 28
2.3. Rank . 29
2.4. Elementary higher order functions . 30
2.5. State management . 35
2.6. Folding and scanning . 35
2.7. Products and two-dimensional convolution 39
2.8. Searching and partitioning . 45
2.9. Pattern matching . 45
2.10. Sorting and permutations . 46
2.11. Using glyphs . 50
2.12. Strings and regular expressions . 51

3. Functional data structures . 53
3.1. Combinator calculi . 53
3.2. Church encoding . 56

3.2.1. Natural numbers . 56
3.2.2. Boolean domain . 58
3.2.3. Natural number division and comparisons 60
3.2.4. Pairs . 61
3.2.5. Lists . 62

5

3.3. Sets . 63
3.4. Queues . 64
3.5. Dictionaries . 66
3.6. Relations . 68
3.7. Graphs . 70

3.7.1. Graph constructors . 71
3.7.2. Elementary graph operations . 72
3.7.3. Breadth-First and Depth-First Search 73

4. Applied mathematics . 75
4.1. Polynomials . 75

4.1.1. Numerically evaluating rational sums and integrals 75
4.1.2. Polynomial discriminants . 78

4.2. Integer arithmetic coding . 79

5. Programming language theory . 81
5.1. Lexical analysis . 81
5.2. Parsing techniques . 81

6. KamilaLisp as a shell . 83
6.1. Operating system information . 83
6.2. File management . 83
6.3. Process management . 83

7. Symbolic manipulation . 85
7.1. Polynomials . 85
7.2. Mathematical functions . 85
7.3. Limits . 85
7.4. Derivatives . 85
7.5. Indefinite integration . 85
7.6. Series expansion . 85

8. Concurrent programming and networking 87
8.1. Tasks and daemons . 87
8.2. Message passing . 87
8.3. Sockets . 87
8.4. HTTP servers . 87

9. Codecs and data formats . 89
9.1. XML . 89
9.2. JSON . 89
9.3. CSV . 89
9.4. bzip2 . 89

6

9.5. gzip . 89
9.6. xz . 89
9.7. lz4 . 89
9.8. base64 . 89
9.9. zip . 89
9.10. tar . 89

Appendix A . 91

7

Chapter 1

Initial considerations

This chapter discusses the basics of KamilaLisp. Throughout this book, the author will use the Kami-
laLisp interpreter to check and execute the declarations of a program one by one. The emphasis is put
on list processing and mathematical functions to form an elementary understanding of the language.

1.1. Programs and variables
A KamilaLisp program is a sequence of declarations, which are executed in the order they are given.
The first program presented in this book is shown below:

--> def a (+ (* 2 3) 2)

8

--> def b (* 5 a)

40

The program consists of two declarations. The first declaration binds the identifier a to the integer
8, and the second declaration binds the identifier b to the integer 40, which follows from the intuitive
understanding of the arithmetic operations. To the reader not accustomed to Lisp-like syntax, every
element of the syntax tree that would otherwise be implicitly grouped by a language with usual arith-
metical precedence rules is explicitly grouped by parentheses to form a list. The resulting values of
variables can be determined as follows:

--> ?a

8

--> ?b

40

The question mark is a sign for the KamilaLisp interpreter not to evaluate the entire input as an
expression but rather, to query the value of the value it refers to.

Every list besides the empty list (usually written as () or alternatively nil) has a head defined as
the first element of it. When a Lisp program is evaluated, the head of the current list is assumed to be
a callable value, while the rest of the list (also called the tail) is assumed to be a list of arguments.

Because the list of arguments to a function (the tail) is evaluated before its applied to the head,
a perceptive reader could point out a potential issue - How to introduce list literals in the code? This
question is indeed well-founded, since the list literal would be evaluated in order to pass it parameter to
some callable object, hence the tail of the literal would be applied to its head, thus behaving undesirably
and almost certainly raising an error. Every Lisp dialect addresses this issue in the same way using
the quoting mechanism. Simply put, the quote prevents a list from being evaluated. To observe this
behaviour, introduce two more functions called car and cdr to obtain respectively the head and tail of
a list:

Chapter 1. Initial considerations 10

--> car '(1 2 3)

1

--> cdr '(1 2 3)

(2 3)

This may alert the observant reader once again - What if I want to create a list out of a set of
expressions? This question is very relevant because if the quote stops a form from being evaluated,
then surely the expressions inside of it will stay untouched too. The answer is simple - use the tie

function as follows:

--> tie 1 2 3

(1 2 3)

--> tie (+ 2 2) (/ 6 3) (+ 2 3)

(4 2 5)

KamilaLisp follows scoping rules familiar to the reader from other programming languages, such
as Scheme or C++ - static scoping (also called lexical scoping), where an attempt is initially made to
resolve a variable in the current scope. If this approach fails, the variable is resolved in the scope of its
lexical ancestors until either the interpreter finds an environment where the variable is bound, or raises
an error regarding an unbound variable. Additionally, variables may be shadowed, as demonstrated
below:

--> def my-list '(1 2 3)

(1 2 3)

--> car my-list

1

--> def my-list (cdr my-list)

(2 3)

--> car my-list

2

However, it is not possible to shadow pre-defined variables and functions in the global scope:

--> def car 5

RuntimeException thrown in thread 1dbd16a6:

def can not shadow or redefine built-in bindings.

at entity def 1:1

at def primitive function

To fully exercise lexical scoping, the language needs to provide means of binding names inside a
specific block of code (unlike def which binds names in the global scope). This can be accomplished
in a variety of ways, the most straightforward one being the let construct. The let construct binds a
list of name/value pairs and evaluates the body of the construct in the context of the newly created
environment. The syntax of the let construct is demonstrated by the following example:

--> def a 5

5

--> def b 6

6

Chapter 1. Initial considerations 11

--> + a b

11

--> let ((a 10) (b 15)) (+ a b)

25

1.2. Functions and lambda expressions

Functions are the core component of KamilaLisp. They are first-class objects, meaning they can be
passed as arguments to other functions, returned from functions and bound to names. The syntax of
a function declaration is as follows:

--> defun square (x) (* x x)

(λ x . (* x x))

The function that has just been declared is called square and takes one argument called x. The
body of the function is the expression * x x. The function returns the value of its expression in an
environment where its arguments are bounded, which in this particular scenario is naturally the square
of the argument. Notice that when defining a monadic function, a pair of parentheses around its only
argument’s name can be omitted for brevity:

--> defun square x (* x x)

(λ x . (* x x))

Since square is now bound in the global scope, it can be applied to an argument. The code below
binds the name a to the result of the application of the number 5 to the function square:

--> def a (square 5)

25

Functions do not need to be named. They can be introduced in the code anonymously using
the lambda construct, which opens up many new possibilities for structuring code. For example, the
declaration of the function square can be rewritten as follows:

--> def square (lambda x (* x x))

(λ x . (* x x))

Furthermore, multivariate lambda expressions can serve as a substitute for the let construct:

--> let ((a 10) (b 15)) (+ a b)

25

--> (lambda (a b) (+ a b)) 10 15

25

Since functions are first-class in KamilaLisp, it is also possible to return them from functions and
take them as arguments. The following example demonstrates these programming techniques using the
lambda construct:

--> ; Returns a function that adds a given number to its argument.

Chapter 1. Initial considerations 12

--> ; The technique demonstrated is often called "currying".

--> defun make-adder (x) (lambda y (+ x y))

(λ x . (λ y . (+ x y)))

--> def add-5 (make-adder 5)

(λ y . (+ 5 y))

--> add-5 10

15

--> ; Returns a string explaining the value of a function at point.

--> defun explain (f x) (str:format "The value of f(x) for x={?x} is {f x}")

(λ f x . (str:format "The value of f(x) for x={?x} is {f x}"))

--> explain square 4.5

The value of f(x) for x=4.5 is 20.25

When implementing complex functions, it is often of particular interest to keep the partial results
obtained during the execution of the function. This is achieved by cascading the let construct or using
the let-seq construct. The following examples implement a function that raises its only argument to
the eighth power1:

--> defun p8 x (let-seq

... (def y (* x x))

... (def z (* y y))

... (* z z))

(λ x . (let-seq (def y (* x x)) (def z (* y y)) (* z z)))

--> p8 4

65536

--> defun p8 x (let ((y (* x x))) (let ((z (* y y))) (* z z)))

(λ x . (let ((y (* x x)) (z (* y y))) (* z z)))

--> p8 4

65536

--> defun p8 x (let ((y (* x x)) (z (* y y))) (* z z))

(λ x . (let ((y (* x x)) (z (* y y))) (* z z)))

--> p8 4

65536

Notice that despite using def, defun, etc..., the let-seq construct does not create any new bindings
in the global scope - the bindings are always local to the block.

When a function is called, the call stack is modified in the process. The call stack is a data structure
implemented inside of the interpreter that keeps track of the lambda expressions that are currently being
executed. Application of a lambda function forces creation of a new stack frame which is subsequently
pushed onto the stack. When the function returns, the stack frame is popped from the stack - this way,
the interpreter knows where to return to after the function yields a value. When an exception is raised,
the interpreter will present the user with a stack trace, which is a list of functions that were executed
before the exception was raised, for example:

--> defun f x (/ 1 0) ; Oops! Division by zero!

(λ x . (/ 1 0))

--> defun g x (f x)

(λ x . (f x))

1Many reimplementations of common built-in functions mentioned in the book that are present in Kami-
laLisp are rather suboptimal and demonstrated only for the sake of completeness. The programmer is urged
to use the optimised predefined routines when possible instead.

Chapter 1. Initial considerations 13

--> defun h x (g x)

(λ x . (g x))

--> h 10

ArithmeticException thrown in thread 5e82df6a:

Division by zero

at entity h 1:1

at (λ x . (g x)) 1:9

at entity g 1:12

at (λ x . (f x)) 1:9

at entity f 1:12

at (λ x . (/ 1 ...)) 1:9

at entity / 1:12

at / primitive function

1.3. Conditional expressions and comparisons
The comparison operators in KamilaLisp do not differ significantly from the ones present in other,
perhaps more orthodox programming languages (such as C). It is worth noting that scalar2 equality is
checked using the = function, inequality is checked for using the /= function, while the <=> function is
the so-called three way comparison operator3, which returns -1, 0 or 1 respectively if the first argument
is less than, equal to, or greater than the second argument.

KamilaLisp provides a number of conditional expressions used to control the flow of execution.
The most basic one is the if construct which takes three arguments - a condition, an expression to
be evaluated if the condition is true, and an expression to be evaluated if the condition is false. The
syntax of the if construct is demonstrated by the following example:

--> defun my-abs x (if (< x 0) (- x) x)

(λ x . (if (< x 0) (- x) x))

--> my-abs -5

5

--> my-abs 5

5

--> my-abs 0

0

The if construct is a special case of the more general cond, which takes a list of pairs of conditions and
expressions. The first condition that evaluates to a truthy value is used to evaluate the corresponding
expression. The syntax of the cond construct is demonstrated by the following reimplementation of the
three-way comparison operator:

--> defun compare (x y) (cond ((< x y) -1) ((> x y) 1) (0))

(λ x y . (cond ((< x y) -1) ((> x y) 1) (0)))

--> compare 5 10

-1

--> compare 10 5

1

--> compare 5 5

0

2Operating on scalar values, i.e. not vector, matrix or general array values.
3Also called the spaceship operator.

Chapter 1. Initial considerations 14

1.4. Recursive functions
Recursion is a powerful technique extensively used in functional programming. Its role in KamilaLisp is
admittedly not as extensive as in other functional programming languages, since the language provides
a number of other often more wieldy techniques for solving the same problems (e.g. using array
programming), however it is still worth mentioning that KamilaLisp provides a number of tools for
writing recursive functions.

The following function implements the factorial function in a recursive manner:

--> defun factorial (n) (if (= n 0) 1 (* n (factorial (- n 1))))

(λ n . (if (= n 0) 1 (* n (factorial (- n 1)))))

--> factorial 5

120

Since KamilaLisp supports arbitrary precision numerical computation, the factorial function can be
applied to arbitrarily large numbers. However, at some point this function will overflow its call stack,
meaning that the number of recursive calls will exceed the maximum call stack size. This is a common
problem with recursive functions and it can be solved by using tail recursion. Tail recursion is a special
case of recursion, where the recursive call is the last expression in the function body. In this case, the
stack frame of the current function can be reused for the recursive call, hence the stack will cease to
grow uncontrollably. To make use of this technique, the factorial function needs to be altered in a way
that the recursive call is the last expression in the function body:

--> defun factorial (n) (let-seq

... (defun f' (n acc) (if (= n 0) acc (f' (- n 1) (* n acc))))

... (f' n 1))

--> factorial 5

120

The factorial function defines a helper function that has an accumulator argument, which is used
to store the intermediate results of the computation. The helper function is called recursively and the
accumulator argument is updated with the result of the multiplication. The let-seq construct is used
to define the helper function, so that it is not visible outside the factorial function. There is one more
step to make this function tail-recursive: replace the self-referential call in the helper function:

--> defun factorial (n) (let-seq

... (defun f' (n acc) (if (= n 0) acc (&0 (- n 1) (* n acc))))

... (f' n 1))

--> factorial 5

120

The self-referential call was replaced by &0 which is a reference to the current function. This is a
special case of the & operator, which is used to refer to functions by nesting level in the source code,
akin to de Bruijn indices. The &0 operator refers to the current function, &1 refers to the function
(anonymous or named) that is the lexical ancestor the current function, and so on. This way, the
factorial function no longer raises an error when applied to large numbers, since the stack does not
grow beyond the maximum size:

--> factorial 1000

402387260077093773543702433923003985719374864210714

632543799910429938512398629020592044208486969404800

Chapter 1. Initial considerations 15

; [...]

000

000

Another closely related function to the factorial function that can be implemented using tail re-
cursion is the power function. The following expression implements the power function in a simple
recursive manner:

--> defun power (x n) (if (= n 0) 1 (* x (power x (- n 1))))

(λ x n . (if (= n 0) 1 (* x (power x (- n 1)))))

--> power 2 10

1024

Once again, the problem is that the stack will overflow when the power function is applied to
large numbers. To prevent this and speed up the computation, the power function needs to be first
transformed so that the recursive call is the last expression in the function body. Consider the following
trace of the power function applied to the arguments 2 and 4:

--> power 2 4

(* 2 (power 2 3))

(* 2 (* 2 (power 2 2)))

(* 2 (* 2 (* 2 (power 2 1))))

(* 2 (* 2 (* 2 (* 2 (power 2 0)))))

(* 2 (* 2 (* 2 2)))

(* 2 (* 2 4))

(* 2 8)

16

After transforming the function to use an accumulator:

--> defun power (x n) (let-seq

... (defun f' (x n acc) (if

... (= n 0)

... acc

... (f' x (- n 1) (* x acc))))

... (f' x n 1))

When this implementation of the power function is applied to the same arguments as before, the
following trace is produced:

--> power 2 4

(f' 2 4 1)

(f' 2 3 2)

(f' 2 2 4)

(f' 2 1 8)

(f' 2 0 16)

16

Notice, that the size of the expression does not grow, hence the function could in theory be rewritten
as a simple loop with a constant stack usage requirement - a concept more familiar from imperative
programming languages such as C or C++. The final improvement that needs to be applied is actually
coaxing the interpreter to perform tail call optimisation using the self-referential call &0:

Chapter 1. Initial considerations 16

--> defun power (x n) ((

... lambda (x n acc) (

... if (= n 0) acc

... (&0 x (- n 1) (* x acc)))) x n 1)

--> power 2 4

16

1.5. Function composition
Function composition is a a common core concept in functional programming languages, an emphasis
on which is placed in KamilaLisp. Using the @ operator, it is possible to compose two or more functions
into a single function. An example follows:

--> defun f x (* x 2)

(λ x . (* x 2))

--> defun g x (+ x 1)

(λ x . (+ x 1))

--> f 2

4

--> g 2

3

--> f@g 2

6

The usefulness of function composition may be challenging to appreciate at first. In the end, f@g x

⇔ f (g x), however, the function returned by the @ operator does not have to be immediately applied
- it can be bound to a name and used later. Without the composition operator, it would be necessary
to introduce a lambda to achieve the same result as f@g - that is, lambda x (f (g x)). The difference
between manually composing two functions to create a new function and using the @ operator is how
they treat arguments4. The @ operator variant of the same expression does not refer to the arguments
of the composed functions (and thus does not manually relay an indeterminate amount of them to the
innermost function), creating the basic building block for point-free programming.

Of course, it is possible to compose arbitrarily many functions by using the @ operator multiple
times. The following example demonstrates the composition of three functions:

--> defun f x (* x 2)

(λ x . (* x 2))

--> defun g x (+ x 1)

(λ x . (+ x 1))

--> defun h x (- x 3)

(λ x . (- x 3))

--> f@g@h 2

0

Another form of function composition notoriously used in the APL family of programming languages
is the so-called fork (the µ-recursive composition operator). Generally speaking, it is sometimes of
special interest to preprocess the arguments using different functions (reductees), and then funnel the

4Function composition performed using the @ operator does not require creating a new stack frame for
the lambda function.

Chapter 1. Initial considerations 17

results into a single function (reductor). For instance, the arithmetic mean is defined as the quotient
(reductor) of the sum and length of a list (reductees), while a palindrome is defined as a string for which
the equality (reductor) between it and its reverse (reductees) holds.

To implement a mean function using a fork, it is necessary to define a function that sums the list
beforehand using the tally function which returns the length of a list. A non-zero value is considered
truthy, hence the following definition of the sum function:

--> defun sum (l) (if (tally l) (+ (car l) (sum (cdr l))) 0)

(λ l . (if (tally l) (+ (car l) (sum (cdr l))) 0))

--> sum '(1 6 2 3)

12

There are many alternative ways to implement it. One problem the reader may stumble upon is
= 'nil 'nil returning 'nil. This behaviour is reasoned by the fact that equality vectorises over lists5,
meaning that equality is tested element-wise. To determine structural equality, it is advised to use the
same function. The following example demonstrates this behaviour:

--> = '(1 2 3) '(1 2 4)

(1 1 0)

--> same '(1 2 3) '(1 2 4)

0

--> same '(1 2 3) '(1 2 3)

1

Hence arguing for a simpler implementation of the sum function:

--> defun sum (l) (if (same l '()) 0 (+ (car l) (sum (cdr l))))

(λ l . (if (same l '()) 0 (+ (car l) (sum (cdr l)))))

--> sum '(1 6 2 3)

12

The arithmetic mean function is thusly introduced as follows:

--> [/ sum tally] '(1 6 2 3 4)

3.2

Naturally, it could also be bound to a name without applying the fork instantaneously:

--> def avg [/ sum tally]

[/ sum tally]

--> avg '(1 6 2 3 4)

3.2

The key merits of point-free programming (a paradigm in which function definitions do not identify
the arguments or ”points” on which they operate) are:

• The code is more concise.

• The code is often more readable.
5A more specific way to phrase it would be to say that = is a pervasive function.

Chapter 1. Initial considerations 18

• The code is faster, because there is no need to allocate a stack frame.

• The code does not need to bind any names.

The lack of argument naming gives the point-free paradigm a reputation of being obtuse, hence
the humorously used epithet ”pointless style”6. However, the point-free paradigm is not necessarily
obscure. In fact, it is often more readable than the equivalent imperative code and favoured by many
languages, such as Haskell, APL, J, PostScript, Forth, Factor, jq and the Unix shell7.

1.6. Partial application and µ-recursive functions
Many functional programming languages such as OCaml and Haskell automatically curry functions by
default, that is, allow applying functions to fewer arguments than they are defined to take. This is
a useful feature, since it allows for the creation of new functions by binding some of the arguments
of a function to a value. This mechanism is called partial application. KamilaLisp supports partial
application of functions but it does not happen by default, as unlike OCaml and Haskell, KamilaLisp
supports variadic functions. Recall the following example given earlier in the book:

--> ; Returns a function that adds a given number to its argument.

--> ; The technique demonstrated is often called "currying".

--> defun make-adder (x) (lambda y (+ x y))

(λ x . (λ y . (+ x y)))

--> def add-5 (make-adder 5)

(λ y . (+ 5 y))

--> add-5 10

15

Using partial application, the example can be rewritten as follows:

--> defun add-x n $(+ n)

(λ n . $(+ n))

--> def add-5 (add-x 5)

$[+, 5]

--> add-5 6

11

Partial application is particularly useful in conjunction with various kinds of function composition,
as it allows for the vast majority of functions that are defined in terms of other functions to be defined
in a point-free manner. Another valuable example would be a function that returns the remainder of
a number when divided by two.

--> defun mod-2 (n) (mod n 2)

(λ n . (mod n 2))

--> mod-2 10

0

--> mod-2 11

1

6http://hdl.handle.net/1822/2869
7The pipe operator is essentially point-free function composition. The Unix shell has more interesting

properties from a category theoretic perspective, due to its extensive use of monads. The pipe operator is
an implementation of bind, cat is in reality monadic return. Moreover, a pair of these operations, adding <

and >, satisfy the monadic laws - cat f | cmd is the same as cmd <f (left-hand identity); cmd | cat is the
same as cmd (right-hand identity); c1 | (c2 | c3) is the same as (c1 | c2) | c3.

Chapter 1. Initial considerations 19

It is not immediately clear how to define this function in a point-free manner, since partial appli-
cation will apply the arguments in order as given, and the argument that needs to be partially applied
here is actually the second argument to mod. This problem can be solved in a two ways - the first one
is to use the commute operator ^ which reverses the argument order to a function:

--> def mod-2 $(^mod 2)

$['^mod, '2]

--> mod-2 5

1

--> mod-2 6

0

Another, perhaps more elegant solution is to use partial application placeholders:

--> def mod-2 $(mod _ 2)

$['mod, _, '2]

--> mod-2 5

1

--> mod-2 6

0

This way, the _ placeholder indicates that the first argument given to the resulting function should
be applied in its place. The placeholder can be used multiple times and it is required that all placeholder
slots are filled when applying the already partially applied function.

Variadic functions are functions that take an arbitrary number of arguments. + is a good example
of a variadic function, since when applied to more than two arguments it just sums all of them:

--> + 1 2 3 4 5

15

It is possible to define custom variadic functions in KamilaLisp using special argument syntax. To
recall, lambda (x y) (code) takes two arguments - x and y. This function can be made variadic
by prepending the last argument with an ellipsis - lambda (x ...xs) (code). The last argument
will be bound to a list of all the remaining arguments. This has an interesting property: while the
aforementioned function takes at least one argument (because ...xs can be empty), it can be modified
to take any amount of arguments, even zero - lambda ...xs (code). To demonstrate this behaviour,
the following function will obtain the arithmetic average of all its arguments, but will refuse to be called
with zero arguments:

--> defun avg (x ...xs) (/ (+ x (sum ...xs)) (+ 1 (tally ...xs)))

(λ x ...xs . (/ (+ x (sum ...xs)) (+ 1 (tally ...xs))))

--> avg 1 6 2 3 4

3.2

--> avg 5

5

--> avg

TypeError thrown in thread 15eb5ee5:

Expected at least 1 arguments to `(λ x ...xs . (/ (+ x ...) ...))'.

at entity avg 1:1

at (λ x ...xs . (/ (+ x (sum ...xs)) ...)) 1:11

Chapter 1. Initial considerations 20

Equipped with the power of variadic functions and recursion, the next natural step is to define
µ-recursive functions. Consider the following basic µ-recursive functions:

• For all natural numbers i, k where 0 ≤ i ≤ k, the projection function (sometimes also called the
identity function when i = 0) is defined as P k

i (x0, . . . , xk) = xi. The projection function is a
built-in operator in KamilaLisp, where #a is equivalent to P k

a .

• For each natural n and k, the constant function Ck
n is defined as Ck

n(x0, . . . , xk) = xn. This is
easily implemented using the previously discussed projection function as $(#0 n).

• For each natural n, the successor function Sn is defined as Sn(x) = x + 1. This is easily imple-
mented using just partial application - $(+ 1).

The µ-recursive composition operator (also called the substitution operator) defined for an m-
ary function h(x0, . . . , xm) and exactly m n-ary functions g0(x0, . . . , xn), . . . , gm(x0, . . . , xn) as h ◦
(g0, . . . , gm) = f where f(x0, . . . , xn) = h(g0(x0, . . . , xn), . . . , gm(x0, . . . , xn)). This definition is es-
sentially equivalent to KamilaLisp forks8 - [h g_0 ... g_m] x_0 ... x_k.

The µ-recursive primitive recursion operator ρ(g, h) = f for k-ary function g(x0, . . . , xk), k + 2-ary
function h(y, z, x0, . . . , xk) and k + 1-ary function f yields the following piecewise function:

f(a, x0, . . . , xk) =

{
g(x0, . . . , xk) if x = 0

h(a− 1, f(a, x0, . . . , xk), x0, . . . , xk) if x 6= 0

The KamilaLisp implementation of this concept is slightly more involved, requiring the lift function
to apply a function on a existing variadic parameter pack:

--> defun mu-prim-rec (g h) (

... lambda (a ...xs) (

... if (= a 0)

... (lift g ...xs)

... (lift $(h (- a 1) (lift $(mu-prim-rec g h) ...xs)) ...xs)))

The µ-recursive minimization operator is less demanding to implement. Intuitively, minimisation
seeks, beginning the search from 0 and proceeding upwards, the smallest argument that causes the
function to return zero; if there is no such argument, of if one encounters an argument for which f is
not defined, then the search never terminates, and is not defined for the argument.

--> defun mu-min f (lambda ...xs (let-seq

... (defun mu-min-iter i (if (lift f ...xs) (&0 (S i)) i))

... (mu-min-iter 0)))

1.7. Iteration
Given a function f , the n-fold application of f to x is usually denoted in mathematics as fn(x). For
instance, f0(x) = x, f1(x) = f(x), and f2(x) = f(f(x)). More generally, a recursive relation can be
defined as fk(x) = f(fk−1(x)) for k ≥ 1. Given an iteration of a function fn(x), the function f is called
the step function, n is called the order of iteration and x is called the starting value. In KamilaLisp,
iteration is introduced using the while higher order function which, in the presently most useful form
to the mathematical definition, takes three arguments - the starting value, the order of iteration and
the step function.

8A general version of APL 3-trains; https://aplwiki.com/wiki/Train#3-trains

Chapter 1. Initial considerations 21

Consider the successor function defun s x (+ x 1). To provide a basic example, addition of two
numbers + a b can be implemented as an iteration of order b of the successor function s with the initial
value a:

--> defun add (a b) (while a b $(+ 1))

(λ a b . (while a b $(+ 1)))

--> add 3 4

7

Recall the power function and its previously discussed, tail-recursive definition:

--> defun power (x n) ((

... lambda (x n acc) (if (= n 0) acc (&0 x (- n 1) (* x acc)))) x n 1)

(λ x n . ((λ (x n acc) (if (= n 0) acc (&0/syn x (- n 1) (* x acc)))) x n 1))

Since tail recursion is essentially equivalent to iteration, the power function may be implemented
as an iteration of order n− 1 of the multiplication function * with the initial value x:

--> defun power (x n) (while x (- n 1) $(* x))

(λ x n . (while x (- n 1) $(* x)))

--> power 2 4

16

Iteration using while and other higher order functions is described later on in the book. As a
tool, iteration is more suitable to certain problems over recursive (functional) or array programming
approaches9.

Of course, iteration with a fixed number of steps is the simplest form of iteration that covers many
usages of the for loop from other more orthodox languages, such as C. However, iteration is often
conditional and depends on some particular predicate. Consider the Collatz conjecture, one of the
most famous unsolved problems in mathematics. The conjecture asks whether iterating this function
as many times as needed will eventually reach the number 1:

f(n) =


n
2 if n ≡ 0 (mod 2)

3n+ 1 if n ≡ 1 (mod 2).

Providing a formal proof of the Collatz conjecture is beyond the scope of this book, but KamilaLisp
makes it easy to test the conjecture for a finite set of numbers10. Start by implementing the function
f in code and then use it in a recursive approach and a tail-recursive approach:

--> defun collatz (n) (if (= (mod n 2) 0) (/ n 2) (+ (* 3 n) 1))

(λ n . (if (= (mod n 2) 0) (/ n 2) (+ (* 3 n) 1)))

--> defun collatz-rec (n) (if (= n 1) 1 (collatz-rec (collatz n)))

(λ n . (if (= n 1) 1 (collatz-rec (collatz n))))

--> defun collatz-tail (n) (if (= n 1) 1 (&0 (collatz n)))

(λ n . (if (= n 1) 1 (&0 (collatz n))))

9For instance, computing the Convex Hull using the Graham scan algorithm, which has better asymptotic
complexity than the more naive Jarvis scan as easily implemented in array fashion

10Even though the Collatz conjecture has been proven using computers for extremely large values of n,
this is not enough evidence to claim that the Collatz function is likely true - consider the Polyá conjecture,
for which the initial disproof by counterexample quoted a number estimated to be around n = 1.845× 10361

Chapter 1. Initial considerations 22

After testing the functions for a few small numbers (say, n < 1000), it is clear that the conjecture
holds for them. To rewrite this tail-recursive function using iteration, it is required to use the alternate
definition of while. The second argument to while can be an integer as demonstrated previously,
however it can also be a function that returns a boolean value. The iteration will continue as long as
the function returns a truthy value. The new function collatz-whl will iterate the collatz function
until n reaches 1:

--> defun collatz-whl (n) (while n $(/= 1) collatz)

(λ n . (while n $(/= 1) collatz))

Another way to use while is to omit the predicate argument and return a two element list of
whether to continue iteration (true/false - yes/no) and the new value, however this approach is not
demonstrated due to its lack of utility.

It might be of particular interest to determine the number of iterations and the numbers that have
been reached in the process. This can be done using the partial-while function which, as the name
suggests, iterates a function and yields a list of partial results that have been obtained before the final
result:

--> defun collatz-list (n) (partial-while n $(/= 1) collatz)

(λ n . (partial-while n $(/= 1) collatz))

--> collatz-list 15

(46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1)

Another valuable comparison to be made between recursion, tail recursion and iteration is the im-
plementation of Fibonacci numbers. Despite being implemented in KamilaLisp already as the function
fib, consider the following reimplementation:

--> defun fibr (n) (if (< n 2) n (+ (fibr (- n 1)) (fibr (- n 2))))

(λ n . (if (< n 2) n (+ (fibr (- n 1)) (fibr (- n 2)))))

--> fibr 5

5

--> fibr 10

55

To derive a tail-recursive form of this function, it is necessary to use two accumulators:

--> defun fibt (n) ((

... lambda (n a b) (if (= n 0) a (&0 (- n 1) b (+ a b)))) n 0 1)

(λ n . ((lambda (n a b) (if (= n 0) a (&0/syn (- n 1) b (+ a b)))) n 0 1))

--> fibt 10

55

The iterative version of this function trivially follows, however, let’s assume that it is not possible to
implement the iterative or tail-recursive version of this function - so the only implementation available
a slow function that overflows the stack often. While in practice this is not the case, it is a good exercise
to consider different ways in which the naive fibonacci function be improved.

Notice that the fibonacci function is rather expensive to compute, yet it takes just a number and
returns just a number, so it is a good candidate for memoization. The memoization function memo

takes a function and returns a memoized version of it. The memoized version of the function will store
the results of previous calls and return them if the same arguments are passed to the function again.
This is a very useful technique to improve the performance of functions that are expensive to compute
and are called with the same arguments repeatedly via a technique akin to dynamic tabulation of a
function. The memoized version of the fibonacci function is, to no surprise, created as follows:

Chapter 1. Initial considerations 23

--> def fibr (memo fibr)

memo$(λ n . (if (< n 2) n (+ (fibr (- n 1)) (fibr (- n 2)))))

--> fibr 10

55

--> fibr 20

6765

--> fibr 30

832040

--> fibr 50

12586269025

-->

The memoized version still has some issues (e.g. it will still overflow the stack if the cache is not big
enough) but it is a good improvement over the original version. The built-in function fib in KamilaLisp
uses the Binet formula to compute the Fibonacci numbers, which is a much faster method than the
naive recursive approach.

One nuance that needs to be pointed out is that in functions and lambda expressions, names are
updated ad-hoc and usually looked up when needed to allow the programmer to utilise some interesting
concepts such as mutual recursion. This has a few consequences, for instance:

--> defun f (x) (+ x a)

(λ x . (+ x a))

--> def a 5

5

--> f 5

10

Another, more serious consequence is that the memoized version of the Fibonacci function will not
quite work as expected if it is defined under a different name (e.g. as def fibm (memo fibr)). The
function fibm will quickly return the result of fibm 10 if this value was explicitly asked for before, but
not for fibm 11 - because the underlying function, fibr, is still recursing and the memoized version of
it is simply not being used.

1.8. Exceptions
Exceptions are the main error handling mechanism in KamilaLisp, unlike in Haskell/Rust (which usually
make use of optional types) or OCaml (which supplies exceptions alongside optional types). Exceptions
usually unwind the call stack and exhibit worse performance characteristics in the exceptional case,
but they are much easier to use and are more familiar to programmers coming from other languages.
Additionally, they exhibit better performance in the non-exceptional case.

Using the raise function, the arithmetic average function could be rewritten to raise an exception
if the list is empty:

--> defun avg (l) (if (same l 'nil) (raise "empty list") (/ (sum l) (tally l)))

(λ l . (if (same l 'nil) (raise "empty list") (/ (sum l) (tally l))))

--> avg '(1 2 3 4 5)

3

--> avg '()

RaiseError thrown in thread 6b927fb:

empty list

Chapter 1. Initial considerations 24

at entity avg 1:1

at (λ l . (if (same l 'nil) ...)) 1:11

at entity if 1:16

at if primitive function

at entity raise 1:34

at raise primitive function

The exception raised by avg and other kinds of exceptions (e.g. the one raised by / 1 0) can be
caught using the try-catch function. For instance, it can be employed to return the length of the error
message instead of the average in the exceptional case, since the error variable is bound in the catch
block supplying the error handler with the exception’s message:

--> try-catch (avg '()) (tally error)

299

Of course, there is an extension to this system that allows the catch handler to distinguish different
kinds of failures, as well as an extension to raise that lets the programmer supply a custom exception
type. An example of this follows:

--> defun frobnicate (x) (cond

... ((< x 10) (raise 'domain_error "Input too large."))

... ((> x 10) (raise 'domain_error "Input too small."))

... ((= x 0) (raise 'arithmetic_error "Division by zero."))

... ((= x 1) (raise 'logic_error "Unimplemented for x=1."))

... (/ 1 x))

The invocation and subsequent handling of the exception is as follows:

--> defun stringify-type error-id (cond

... ((same error-id 'domain_error) "Domain")

... ((same error-id 'arithmetic_error) "Arithmetic")

... ((same error-id 'logic_error) "Logic"))

--> try-catch (frobnicate 0) (str:format

... "Caught a {stringify-type error-id} error of length {tally error}.")

Caught a Domain error of length 357.

Chapter 2

Elementary data structures

This chapter will describe in detail the most common data structures and their implementations in
KamilaLisp. Many data structures in KamilaLisp are defined in terms of each other - for instance, all
the functions that generally operate on sets can also be used on lists, since sets constitute a special case
of lists. This chapter will also describe elementary array programming in KamilaLisp, which is usually
the preferred by many programmers way to solve complex problems quickly.

2.1. Basic list operations
Lists are one of the most important data structures used in functional programming. Every major
programming language provides means of finite sequence storage and KamilaLisp is no different. A
special emphasis is put on list and array processing, the basic building block of dataflow programming.

As mentioned before, every list besides the empty list contains a head (the first element, car) and
a tail (the last element, cdr). The tail of a list is always another list, even if it is empty. The empty
list literal is introduced in the code as 'nil or '().

Using car and cdr it is possible to define a basic, non-tail recursive function that yields the length
of a list.

--> defun length l (if (empty? l) 0 (+ 1 (length (cdr l))))

(λ l . (if (empty? l) 0 (+ 1 (length (cdr l)))))

A generalised version of this function that handles scalar values, variadic application and strings is
available as tally1:

--> tally '(1 2 3) '(4 5)

(3 2)

--> tally '(1 2 3 4 5)

5

--> tally "abcde"

5

--> tally 5

1

--> tally

0

Individual elements may be prepended to a list using the cons function:

1tally - to count or calculate something

Chapter 2. Elementary data structures 26

--> cons 6 'nil

(6)

--> cons 5 (cons 6 'nil)

(5 6)

--> cons 1 '(2 3)

(1 2 3)

Hence, one could define a countdown function as follows:

--> defun countdown x (if x (cons x (countdown (- x 1))) '(0))

(λ x . (if x (cons x (countdown (- x 1))) '(0)))

--> countdown 5

(5 4 3 2 1 0)

Once again, a general result of this function is available in KamilaLisp as the range function:

--> range 5

(0 1 2 3 4)

--> range 5 10

(5 6 7 8 9)

--> range 10 5

(10 9 8 7 6)

--> range 5 -5

(5 4 3 2 1 0 -1 -2 -3 -4)

List concatenation in KamilaLisp is accomplished using the append function. The append function
is of course variadic and accepts an empty parameter

--> append '(1 2 3) '(4 5)

(1 2 3 4 5)

--> append '(1 2 3) '(4 5) '(6 7)

(1 2 3 4 5 6 7)

--> append

'nil

--> append 'nil 'nil

'nil

--> append "Tomato" "sauce"

Tomatosauce

Prefixes and suffixes of lists may be extracted using the take and drop functions as follows:

--> take 3 '(1 2 3 4 5)

(1 2 3)

--> drop 3 '(1 2 3 4 5)

(4 5)

--> take 3 '(1 2 3)

(1 2 3)

--> drop 3 '(1 2 3)

--> take 3 'nil

Chapter 2. Elementary data structures 27

[[]

[]

[]]

--> drop 3 'nil

--> take 5 '(1 2 3)

(1 2 3 0 0)

The take and drop functions also accept negative argument, which changes the direction of the
operation:

--> take -3 "KamilaLisp is Fun"

Fun

More generally, all prefixes and suffixes of a list are extracted using the prefixes and suffixes

functions:

--> prefixes '(1 2 3 4 5)

((1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5))

--> suffixes '(1 2 3 4 5)

((1 2 3 4 5) (2 3 4 5) (3 4 5) (4 5) (5))

--> suffixes "Lisp"

("Lisp" "isp" "sp" "p")

Going back to the take function, it is easy to notice that when the list is shorter than expected,
the resultant list is simply padded with zeroes. This may not be the desired behaviour, thus a variant
of take called cycle is provided. The cycle function takes a list and a number and returns a list of
the same length as the number, where the elements are taken from the list in a cyclic manner:

--> cycle 5 '(1 2 3)

(1 2 3 1 2)

--> cycle 3 '(1 2 3)

(1 2 3)

--> cycle 2 '(1 2 3)

(1 2)

--> cycle 1 '(1 2 3)

(1)

--> cycle 0 '(1 2 3)

--> cycle -1 '(1 2 3)

RuntimeException thrown in thread 1dbd16a6:

cycle: negative length

at entity cycle 1:1

at cycle primitive function

--> cycle 'nil 5

--> cycle "abc" 5

abcab

The replicate function ubiquitously used in APL and Haskell is also available in KamilaLisp,
except its domain is extended to scalar values:

--> replicate 3 5

(5 5 5)

Chapter 2. Elementary data structures 28

--> replicate 5 '(1 2 3)

(1 2 3 1 2 3 1 2 3 1 2 3 1 2 3)

--> replicate 5 "Kamila"

KamilaKamilaKamilaKamilaKamila

--> replicate 0 5

--> replicate 5 'nil

--> replicate '(1 2 3) '(4 5 6)

(4 5 5 6 6 6)

KamilaLisp also provides a few functions for altering the order of elements in a list. The reverse

function reverses the order of elements in a

--> reverse '(1 2 3 4 5)

(5 4 3 2 1)

--> reverse "KamilaLisp"

psiLalimaK

The rotate function, as the name suggests, takes a list and a number and returns a list where the
elements are rotated by the number of slots:

--> rotate 2 '(1 2 3 4 5)

(3 4 5 1 2)

--> rotate -2 '(1 2 3 4 5)

(4 5 1 2 3)

--> rotate -4 "KamilaLisp"

LispKamila

--> rotate 1 'nil

--> rotate 0 'nil

Finally, the shuffle function will take a list and return a list with the same elements, but in a
random order:

--> shuffle '(1 2 3 4 5)

(2 5 3 1 4)

--> shuffle "KamilaLisp"

LpLsikmaia

2.2. Sorting, searching and indexing
KamilaLisp defines a special syntax for indexing into lists. The syntax is as follows:

--> def x '(1 5 2 3 4)

(1 5 2 3 4)

--> ?x$[0]

1

This syntax is very confusing when demonstrated in isolation. First, indexing returns a value
without a function call involved, so it is mandatory to tell the interpreter that the intent is to obtain
the value of an object, hence the ? prefix in the REPL. It is possible to index a list using a list, as
follows:

Chapter 2. Elementary data structures 29

--> ?x$[1 3 4]

(5 3 4)

The indexing function loops over the list it has received and returns respectively the first, third and
fourth items of a list, all tied together into a single array. This is a very powerful feature, as it allows
for a very concise syntax for extracting elements from a list, applying permutations and even sorting,
as demonstrated later in the book. Of course, indexing can also be done using an expression:

--> ?x$[random 5]

3

2.3. Rank

KamilaLisp lists have rank, which is a measure of their nesting, usually interpreted in the context of
how many dimensions they could have. For example, a doubly nested list can be interpreted as a
matrix:

--> ?'((1 2) (3 4))

[[1 2]

[3 4]]

Since a matrix usually has two axes, matrices (lists of lists of scalars) have rank 2. A vector is a list
of scalar values, so it has rank 1. A scalar value has rank 0. The rank of an object can be computed
using the rank function:

--> rank '((1 2) (3 4))

2

--> rank '(1 2 3 4)

1

--> rank 0

0

One interesting case to consider is a ragged list - a list whose elements have different ranks. For
example, the following list is a ragged list:

--> ?'((1 2) (3 4) 5)

The first and second elements of the list have ranks 1 (vectors; lists of scalars), while the last element
has rank 0 (a scalar). The rank of a ragged list is computed as if the maximum of ranks of a list was
considered and the result is negated:

--> rank '((1 2) (3 4) 5)

-2

Chapter 2. Elementary data structures 30

2.4. Elementary higher order functions
KamilaLisp provides a wide variety of higher order functions for manipulating lists. Many of them can
be defined using recursion, however almost all of them are guaranteed to terminate, while recursion
in its general case does not. The use of list processing functions that constitute the core of array
programming is highly encouraged over recursion, because they tend to be more concise, easier to
understand and less error prone.

The most used function is a built-in operator takes a function and a list and applies the function
to each element of the list, yielding a list of the results. Define a successor function and map it over a
list by prepending a single colon before the function name:

--> def s $(+ 1)

$['+, '1]

--> :s '(1 2 3 4 5)

(2 3 4 5 6)

The map function (which is the more familiar name of this construct, predominantly called that in
Haskell and OCaml) has a few nuances that are worth mentioning. First, it is possible to apply it to a
non-list argument and an empty value:

--> :s 5

(6)

--> :s 'nil

-->

The functor returned by : has the same arity as the function it is applied to, hence it is possible
for it to act as a zipWith operation known from e.g. Haskell:

--> :+ '(1 2 3) '(4 5 6)

(5 7 9)

--> :+ '(1 2 3) '(4 5 6 7)

(5 7 9)

--> :+ '(1 2 3 4) '(4 5 6)

(5 7 9)

--> :+ '(1 1 1) '(2 2 2) '(3 3 3)

(6 6 6)

To present an example, the colon operator would be helpful in implementing a function to test
whether its arguments are monotonically increasing or decreasing. The notation x ≤ y ≤ z does not
quite translate to KamilaLisp:

--> < 1 2 3

TypeError thrown in thread 9225652:

2 arguments expected in application.

at entity < 1:1

at < primitive function

A function called monotonic can be defined to test whether a list of numbers is monotonically
increasing or decreasing2, based on the comparison function it takes argument:

2Monotonically decreasing means that every element of a sequence is smaller than the previous element.

Chapter 2. Elementary data structures 31

--> defun monotonic (fn list) (same '(1) (unique (:fn list (cdr list))))

(λ fn list . (same '(1) (unique (:fn list (cdr list)))))

--> monotonic < '(1 2 3)

1

--> monotonic < '(1 4 3)

0

This particular example uses slightly inefficient logic (takes all unique elements of the mapping and
checks if the resultant list is a singleton list3 of 1), while a more efficient implementation would use a
higher order function to test whether all the elements of the resultant list are 1, however this topic will
be covered later on in the book.

Coming back to map, it is possible to specify invariant arguments to the function - the invariant
arguments are constant arguments that are always supplied to the function being mapped, while other
arguments over which map can iterate are changing:

--> :+ 5 '(5) '(1 2 3 4 5)

(11 12 13 14 15)

An important observation to be made is that it is possible to apply a function to a list of lists by
stacking the colon operator multiple times also utilising the invariant arguments to write a function
that forms tuples from the elements in a two-dimensional matrix:

--> def mat '((4 3) (3 4))

[[4 3]

[3 4]]

--> ::cons 5 mat

(((5 4) (5 3)) ((5 3) (5 4)))

The colon operator may not be general enough to be suitable for all uses. For example, it may be
desirable to create a pervasive function - a function which automatically applies itself to all the scalar
values in a list. The built-in functions such as +, - or ln are pervasive by default, but for example the
reverse function is not:

--> reverse '(("hi" "hello") ("kamila" "lisp"))

(("kamila" "lisp") ("hi" "hello"))

Since strings are generally considered scalar values by KamilaLisp (however, this is not the case
in other array programming languages such as APL), applying it on depth zero yields the following
results:

--> reverse%[0] '(("KamilaLisp" "is") "fun!")

(("psiLalimaK" "si") "!nuf")

The function reverse was ran on every object of rank zero of the list. If it is desirable reverse
vectors (lists of scalars), the reverse function should be applied on depth one:

--> reverse%[1] '((1 2) 3 4)

((2 1) 3 4)

3A list containing only one element

Chapter 2. Elementary data structures 32

To give another example, to reverse the rows of a list of matrices, the function should be applied
on depth two:

--> reverse%[2] '(((1 2) (3 4)) ((5 6) (7 8)))

(((3 4) (1 2)) ((7 8) (5 6)))

Of course, since the depth operator is a generalisation of the colon operator (mapping), it is possible
to use it to map a function over a list of lists. In this case, the depth specifier must be negative:

--> io:writeln%[-1] '("Hello" "world!")

The smaller negative number, the more times the map function is applied:

--> cons%[-2] mat 5

(((4 5) (3 5)) ((3 5) (4 5)))

--> ::cons mat 5

(((4 5) (3 5)) ((3 5) (4 5)))

An important thing to note is that the depth operator subtly differs from the colon operator in the
variadic case. The colon operator will determine the shape of the result ad-hoc, regardless of argument
order:

--> ::cons mat 5

(((4 5) (3 5)) ((3 5) (4 5)))

--> ::cons 5 mat

(((5 4) (5 3)) ((5 3) (5 4)))

The depth operator, however, will always infer the shape from its first argument, potentially leading
to unexpected results:

--> cons%[-2] mat 5

(((4 5) (3 5)) ((3 5) (4 5)))

--> cons%[-2] 5 mat

[[5 4]]

This behaviour significantly differs from the behaviour of the depth operator in other languages,
such as APL4, where the depth operator is restricted to only two arguments, making it feasible to try
dynamically determining the shape of the result. In KamilaLisp the shape is inferred from the first
argument, since the operator’s complexity would grow by a large magnitude as a result of it being
a generalisation to an arbitrary amount of arguments. Additionally, the complex inferring rule in
APL-like languages is not very useful in practice and leads to some design shortcomings.

To explore this topic further, it is necessary to demonstrate that the KamilaLisp depth operator
accepts multiple depth values. For example, the following program will apply the function to objects
of rank one extracted from the first array, and the objects obtained by descending once into the second
array:

--> defun f (x y) (str:format "{?x}, {?y}")

(λ x y . (str:format "{?x}, {?y}"))

--> f%[1 -1] '((1 2) (3 4)) '(6 5 (4 3) 2 1)

("(1 2), 6" "(3 4), 5")

4https://aplwiki.com/wiki/Depth_(operator)

Chapter 2. Elementary data structures 33

Notice that the depth operator makes an attempt to salvage the situation arising due to the fact
that the lists are of different sizes by trimming the longer list to the size of the shorter one (which is
not done by APL). To make a more fair comparison with APL, consider the following program instead:

--> f%[-2 0] '((1 2) 3) '((1 2) 3)

(("1, 1" "2, 2") "3, 3")

Since the depth operator simply extracts the objects of the specified rank from the arguments, it
does not pay attention to the shape of other arguments, so scalars for the second argument to f can be
extracted also in this case:

--> f%[-2 0] '((1 2) 3) '(1 2 3)

(("1, 1" "2, 2") "3, 3")

Since APL determines the shape in a more ”clever” (also way slower and more convoluted) way,
this behaviour can not be achieved:

((1 2) 3) ({⍺⍵} ⍥ ¯2 0) (1 2) 3

┌─────────┬───┐

│┌───┬───┐│3 3│

││1 1│2 2││ │

│└───┴───┘│ │

└─────────┴───┘

((1 2) 3) ({⍺⍵} ⍥ ¯2 0) 1 2 3

LENGTH ERROR

((1 2)3)({⍺ ⍵} ⍥ ¯2 0)1 2 3

∧

Finally, the depths list can be defined as a result of an expression:

--> f%[[tie + -] 1] '((1 2) (3 4)) '(6 5 (4 3) 2 1)

("(1 2), 6" "(3 4), 5")

A function similar to list mapping is filter. It takes a predicate and a list and returns a list of
elements for which the predicate returned a truthy value.

--> filter (lambda x (> x 3)) '(1 2 3 4 5)

(4 5)

The relation between filter and map (the colon operator) can be observed by re-implementing one
in terms of the other in the following way:

--> defun my-filter (pred lst) (replicate (= 1 (:pred lst)) lst)

(λ pred lst . (replicate (= 1 (:pred lst)) lst))

--> my-filter (lambda x (> x 3)) '(1 2 3 4 5)

(4 5)

Chapter 2. Elementary data structures 34

filter allows for an elegant yet inefficient implementation5 of a prime sieve. The sieve of Eratos-
thenes is an algorithm for finding all prime numbers up to a given limit. It works by iteratively marking
the multiples of each prime number as composite. To implement this in KamilaLisp, it is needed to use
recursion and two lists of numbers: one for the primes that have been already found, and one for the
numbers that have not been classified yet.

Firstly, define the iteration step function that takes the prime and unclassified lists in a pair, adds
the first element from the unclassified list to the prime list and removes all its multiples from the
unclassified list:

--> defun step data (let-seq

(def primes (car data))

(def cands (car@cdr data))

(case (same cands 'nil) (tie primes 'nil))

(def current (car cands))

(tie (cons current primes) (filter $(mod _ current) (cdr cands))))

This example of let-seq used the construct case, which is a special form of if that may be used
only in let-seq. If the condition that directly follows case is true, then the further execution of the
let-seq’s body is stopped and the value of the expression that follows the condition is returned. This
is especially useful for terminating the computation when a special case is encountered. Using while,
the iteration step function can be applied a finite amount of times to the initial pair of lists:

--> while (tie 'nil (range 2 50)) 1 step

((2) (3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49))

--> while (tie 'nil (range 2 50)) 5 step

((11 7 5 3 2) (13 17 19 23 29 31 37 41 43 47))

--> while (tie 'nil (range 2 50)) 10 step

((29 23 19 17 13 11 7 5 3 2) (31 37 41 43 47))

--> while (tie 'nil (range 2 50)) 15 step

((47 43 41 37 31 29 23 19 17 13 11 7 5 3 2) nil)

--> while (tie 'nil (range 2 50)) 20 step

((47 43 41 37 31 29 23 19 17 13 11 7 5 3 2) nil)

Since the step function converges to a value (eventually yields a value t such that f(t) = t), the
converge function can be used to implement most of the sieve’s logic now:

--> converge step (tie 'nil (range 2 100))

((97 89 83 79 73 71 67 61 59 53 47 43 41 37 31 29 23 19 17 13 11 7 5 3 2) nil)

To provide a final result, it is necessary to extract and reverse the prime list from the pair and wrap
the invocation in a function:

--> defun sieve (n) (reverse@car@converge step (tie 'nil (range 2 n)))

(λ n . (reverse@car@converge step (tie 'nil (range 2 n))))

--> sieve 20

(2 3 5 7 11 13 17 19)

Ultimately, the function can be rewritten as follows to make it more concise and self-contained:

5Compared to the prime number-related primitive functions already supplied by KamilaLisp

Chapter 2. Elementary data structures 35

defun sieve (n) (reverse@car@converge (

lambda x (let-seq

(def primes (car x))

(def cands (car@cdr x))

(case (same cands 'nil) (tie primes 'nil))

(def current (car cands))

(tie (cons current primes) (filter $(mod _ current) (cdr cands))))

) (tie 'nil (range 2 n)))

2.5. State management
In KamilaLisp data structures are immutable. It is however of particular interest to store the state
of a computation so that it persists across multiple invocations. This is generally accomplished using
the meta:state-manager constructor. The state manager is a higher order function that applied to a
function returns a new function that relays the arguments to the original function alongside the state
and stores the result in the state manager’s internal state. The following example implements a counter
function that increments or decrements the state by one each time it is called:

--> def counter (meta:state-manager (lambda (self x) (cond

((= x 'inc) ([tie #0 #0] \+ self 1))

((= x 'dec) ([tie #0 #0] \- self 1))

(true (raise "Invalid argument")))))

2.6. Folding and scanning
Folds and scans are higher-order functions that analyze a recursive data structure (usually a tree or list,
however this section will focus only on folding lists) and through use of a given aggregation functor,
combine the results of recursively processing its constituent parts, building up a return value. The
difference between folds and scans is that the former return only the final result, while the latter return
a list of intermediate results.

To demonstrate the simplest example of a fold, the sum of a list could be computed by folding it
with the + function. Of course, the order of operation in this particular case does not matter since
addition is commutative, however it is common to distinguish left-associative folds and right-associative
folds. Imagine folding a list as inserting a dyadic function between its elements:

fold - (1 2 3 4 5) = 1 - 2 - 3 - 4 - 5

The sum can be parenthesised in two ways: as (((1− 2)− 3)− 4)− 5 or 1− (2− (3− (4− 5))), thus
former is a left-associative fold, while the latter is a right-associative fold.

Additionally, a question arises how should folds handle empty and singleton lists. Folds, in general
case, return the identity element of the aggregation functor when the list is empty. When presented
with a singleton list, the fold applies the function to the identity element and the only element of the
list. Obviously, it is not possible to just query the identity element of the aggregating function, which
is why the identity element of it is usually passed as an argument to fold. Sometimes it is desirable to
fold a list with a function that does not have an identity element, in which case folding a list with a
single element returns it and folding an empty list results in an error.

Of course, all of these variants of folding have their own names in KamilaLisp:

• foldl is a left-associative fold that takes an identity element and preprends it to the input list.

Chapter 2. Elementary data structures 36

• foldr is a right-associative fold that takes an identity element and preprends it to the input list.

• foldl1 is a left-associative fold that does not take an identity element and errors on empty lists.

• foldr1 is a right-associative fold that does not take an identity element and errors on empty lists.

A sum from 1 to n can be naively computed using folds as follows:

--> foldl + 0 (range 1 100)

5050

The direction of the fold does not matter here. However, if presented with a non-associative functor,
the direction of the fold matters. Consider the following example:

--> foldl - 0 (range 1 100)

-4950

--> foldr - 0 (range 1 100)

50

The first example essentially computes ((0 − 1) − 2) − . . . , while the second example computes
0− (1− (2− . . .)).

The aggregating function is always a dyadic function. Depending on the direction of the fold, its
arguments may be reversed. For example, in left-associative folds, the first argument is the accumulator
and the second argument is the current element of the list. In right-associative folds, the first argument
is the current element of the list and the second argument is the accumulator.

Folds make it possible to implement many familiar functions in a more elegant manner. Consider
the arithmetic mean example introduced in the first chapter of the book:

--> defun sum (l) (if (same l '()) 0 (+ (car l) (sum (cdr l))))

(λ l . (if (same l '()) 0 (+ (car l) (sum (cdr l)))))

--> def mean [/ sum tally]

[/ sum tally]

The mean function can be rewritten as follows6:

--> def mean [/ $(foldl1 +) tally]

[/ foldl + 0 tally]

Folds, in a way, transcend the concept of tail recursion. A tail-recursive foldl function can be
implemented in the following way:

--> defun my-foldl (f z l) (if (empty? l) z (&0 f (f z (car l)) (cdr l)))

(λ f z l . (if (empty? l) z (&0 f (f z (car l)) (cdr l))))

--> my-foldl - 0 (range 1 100)

-4950

It is also possible to define many concept using folds, such as map or filter:

--> defun my-map (f l) (foldr (lambda (x y) (cons (f x) y)) 'nil l)

6In a very similar way to APL - compare [/ $(foldl1 +) tally] and +/÷≢.

Chapter 2. Elementary data structures 37

(λ f l . (foldr (lambda (x y) (cons (f x) y)) 'nil l))

--> my-map $(+ 1) (range 1 10)

(2 3 4 5 6 7 8 9 10)

--> defun my-filter (f l) (foldr (lambda (x y) (if (f x) (cons x y) y)) 'nil l)

(λ f l . (foldr (lambda (x y) (if (f x) (cons x y) y)) 'nil l))

--> my-filter $(> 5) (range 1 10)

(1 2 3 4)

Perhaps more surprisingly, it is also possible to join two lists using foldr:

--> defun my-append (l1 l2) (foldr cons l2 l1)

(λ l1 l2 . (foldr cons l2 l1))

--> my-append (range 1 5) (range 6 10)

(1 2 3 4 5 6 7 8 9)

This is due to the fact that foldr accepts an identity element, which in this function is the second
list, and the list being folded as the first list - so in reality, what happens is:

my-append (range 1 5) (range 6 10)

= foldr cons (range 6 10) (range 1 5)

= cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (range 6 10)))))

= (1 2 3 4 5 6 7 8 9)

Scans behave in a very similar way to folds, hence they share a common taxonomy. KamilaLisp
supplies the following scans:

• scanl is a left-associative scan that takes an identity element and preprends it to the input list.

• scanr is a right-associative scan that takes an identity element and preprends it to the input list.

• scanl1 is a left-associative scan that does not take an identity element and errors on empty lists.

• scanr1 is a right-associative scan that does not take an identity element and errors on empty
lists.

While foldl1 + will yield the sum of all the elements of a list, scanl1 + will yield a list of its
partial sums (intermediate results of the fold):

--> foldl1 + (range 1 10)

45

--> scanl1 + (range 1 10)

(1 3 6 10 15 21 28 36 45)

Scans, especially in APL, are extensively used to implement certain kinds of problems. For example,
the prefixes function is implemented in the following way:

--> def my-prefixes $(scanl1 append)

$['scanl1, 'append]

--> my-prefixes "hello!"

("h" "he" "hel" "hell" "hello" "hello!")

Chapter 2. Elementary data structures 38

The prefixes functionality (which in KamilaLisp source code is implemented using methods iso-
morphic to a scan) can be also used to implement other, seemingly unrelated tools in mathematics.
Consider the Levi-Civita symbol, extensively used in linear algebra, defined by the following explicit
expression:

εa1a2a3...an =
∏

1≤i<j≤n

sgn(aj − ai)

A KamilaLisp implementation can be written as follows:

--> defun levi-civita (x) (if

... ([not-same-elements unique #0] x)

... 0 (** -1 (foldl + 0 ([flatten@< #0 prefixes] x))))

A good way to simplify this code is to use the backslash partitioning. In essence, a pair of paren-
theses can sometimes be replaced with a single backslash in place of the opening parenthesis. The
interpreter will replace the backslash with an open parenthesis of the type corresponding to the outer
parenthesis and automatically double the next closing parenthesis of the same type that it encounters.
To demonstrate, consider this version of the original code:

--> defun levi-civita x (

... if ([not-same-elements unique #0] x)

... 0 ** -1 \foldl + 0 \[flatten@< #0 prefixes] x)

To verify the code, generate a 2x2 Levi Civita symbol matrix:

--> levi-civita%[1] '(((0 0) (0 1)) ((1 0) (1 1)))

[[0 1]

[-1 0]]

Another fascinating algorithm to implement using folds and scans is detecting spans of non-nested
C-style comments. Consider the following C language declaration with the commented out parts un-
derlined:

int x /* accumulator */ = 0 /* Store the amount of comments in the code. */ ;

¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ ¯¯¯

Consider a function called comments with arguments chars and str, we find the closing comments
as follows:

rotate -1 (reverse (find (reverse str) chars))

While opening comments are done without any further problems:

find str chars

The find function simply finds occurences of something in a string or list and returns a bit mask
vector with the starting positions as follows:

--> find "an angry aardvark." "a"

(1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0)

Chapter 2. Elementary data structures 39

Finally, the starting and ending comment symbols are put together into a single list as follows:

--> (defun comment (chars str) (:or

... (find str chars)

... (rotate -1 (reverse (find (reverse str) chars)))))

--> comment "/*" "This /* is */ an example"

(0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0)

The final ingredient is connecting together bits and pieces of the problem is an application of
scanr1 /= as follows:

--> defun comment (chars str) \rotate 1 \scanr1 /= \:or

... (find str chars)

... \rotate -1 \reverse@find (reverse str) chars

--> comment "/*" "This /* is */ an example"

(0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0)

Finally, to accomplish the same underlining behaviour, one could use the following function:

--> defun display s (let-seq (def r " -"$[comment "/*" s]) (io:writeln s) r)

(λ s . (let-seq (def r " ¯"$[comment "/*" s]) (io:writeln s) r))

--> display "This /* is */ an example"

This /* is */ an example

¯¯¯¯¯¯¯¯

2.7. Products and two-dimensional convolution
KamilaLisp supports two kinds of products known from mathematics: the inner (generalisation of dot)
product and the outer (cartesian) product. The outer product of two lists is a list of all possible pairs
of elements from the two lists:

--> [outer-product #0 #0] (range 1 4)

(((1 1) (1 2) (1 3)) ((2 1) (2 2) (2 3)) ((3 1) (3 2) (3 3)))

The dot product of two vectors is defined mathematically as follows:

x · y =

n∑
i=1

xiyi

Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot
product or scalar product of Cartesian coordinates. Consider the following example of implementing
the dot product using the inner-product function:

--> inner-product + * '(1 2 3) '(4 5 6)

32

The first argument to inner-product is the summation operation, while the second argument is
the multiplication operation. The third and further arguments are the two vectors to be multiplied.
If only two arguments are provided, the inner-product function yields a function that performs the
operation on arbitrarily many vectors.

To descend into technicalities, the inner-product function may be reimplemented using the foldl1
function and : operator:

Chapter 2. Elementary data structures 40

--> defun my-dot (f g ...xs) (foldl1 f (lift :g ...xs))

This implementation uses the lift function, which takes a list of arguments to be passed into
a function and applies it to them. The equivalence between lift and usual function application is
demonstrated as lift f '(a1 a2 a3...) <=> f a1 a2 a3....

The inner product is particularly useful in the context of convolution. Throughout this section, it
will be chiefly assumed that the convolution is two-dimensional. A step of convolution of two matrices
I and K is illustrated as follows:

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0

×1

×0

×1

×0

×1

×0

×1

×0

×1

∗
1 0 1
0 1 0
1 0 1

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I K I ∗ K

Notice that if one wanted to compute the value of the first cell of the matrix, this process would
be complicated by the fact that the input matrix does not contain adequate data on the border. This
difficulty is often called the free boundary problem. Throughout this section, it will be assumed that
the data in the matrix is padded using the reflected boundary condition, which mirrors the data on the
border. First, consider the following function cell that given a matrix, yields a function to query the
value of a cell at a given position accounting for the reflected boundary condition:

defun cell (mat) \if (/= (rank mat) 2)

(raise "Expected a matrix.")

\lambda (x y) \let-seq

(def h (tally mat))

(def w (tally (car mat)))

\cond

((and (< x 0) (< y 0)) mat$[- (+ y 1)]$[- (+ x 1)])

((and (< x 0) (< y h)) mat$[#0 y]$[- (+ x 1)])

((and (< x 0) (>= y h)) mat$[- (- (* 2 h) 1) y]$[- (+ x 1)])

((and (< x w) (< y 0)) mat$[- (+ y 1)]$[#0 x])

((and (< x w) (>= y h)) mat$[- (- (* 2 h) 1) y]$[#0 x])

((and (>= x w) (< y 0)) mat$[- (+ y 1)]$[- (- (* 2 w) 1) x])

((and (>= x w) (< y h)) mat$[#0 y]$[- (- (* 2 w) 1) x])

((and (>= x w) (>= y h)) mat$[- (- (* 2 h) 1) y]$[- (- (* 2 w) 1) x])

\mat$[#0 y]$[#0 x]

The usages of the identity function #0 stem from the fact that the indexing construct evaluates its
argument if it is not a simple numeric list.

Define the function to compute the value of a two-dimensional convolution at a given position in
the result matrix:

defun convolve-step (cell-mat kern x y) \let-seq

(def kern-h \tally kern)

(def kern-w \tally (car kern))

(case (/= kern-h kern-w)

Chapter 2. Elementary data structures 41

\raise "Expected a square kernel.")

(case (or (/= (mod kern-h 2) 1) (/= (mod kern-w 2) 1))

\raise "Expected an odd-sized kernel.")

(def kern-c \floor (/ kern-w 2))

(def conv-range \flatten@outer-product

(range (- x kern-c) \- (+ x kern-w) kern-c)

(range (- y kern-c) \- (+ y kern-h) kern-c))

(def conv-mat \:$(lift cell-mat) conv-range)

\foldl + 0 * (flatten conv-mat) \flatten kern

Now, define the convolution-2d function that takes argument the input matrix and the kernel
matrix and yields the convolution of the two matrices using the parallel:map-idx function which
behaves comparably to $: (the parallel variant of :), except it also passes the index in the list to the
function:

defun convolve (mat kern) \let-seq

(def cell-mat (cell mat))

\parallel:map-idx (lambda (y row)

\parallel:map-idx (lambda (x _e)

\convolve-step cell-mat kern x y) row) mat

Finally, test the convolution on a simple example:

--> def mat '((1 2 3) (4 5 6) (7 8 9))

--> def kern '((0.11 0.11 0.11) (0.11 0.11 0.11) (0.11 0.11 0.11))

--> convolve mat kern

[[4.95 5.61 5.61]

[6.93 7.59 7.59]

[6.93 7.59 7.59]]

To implement convolution on RGBA images, it is necessary to split the color value into the separate
channels. This can be accomplished using the bit:unpack function. Merging RGBA values together
into a single integer is done using the bit:pack function:

--> bit:unpack 37126378 '(0 8) '(8 16) '(16 24) '(24 32)

(234 128 54 2)

--> bit:pack '(0 8 234) '(8 16 128) '(16 24 54) '(24 32 2)

37126378

Define a function that takes RGB image data (two-dimensional integer matrix), splits the color
channels and applies a convolution kernel to each channel, then fuses the results together.

defun convolve-rgb (img kern) (let-seq

; Extract the R, G and B channels of the image data.

(def r \$($(^/ 255)@bit:unpack _ '(0 8))%[0] img)

(def g \$($(^/ 255)@bit:unpack _ '(8 16))%[0] img)

(def b \$($(^/ 255)@bit:unpack _ '(16 24))%[0] img)

; Convolve each channel and convert back to integer values.

(defun quantize x (cond ((< x 0) 0) ((> x 1) 255) ((round@* x 255))))

(def r \quantize%[0] \convolve r kern)

Chapter 2. Elementary data structures 42

(def g \quantize%[0] \convolve g kern)

(def b \quantize%[0] \convolve b kern)

; Merge the channels back together.

((lambda (r g b)

(bit:pack

(tie 0 8 r)

(tie 8 16 g)

(tie 16 24 b)

(tie 24 32 255)))%[0] r g b))

Since the convolution code has become more complex, it should be saved to a file now and imported
as a library. Declare public symbols that should be visible in the global scope using the public: prefix:

(defun cell (mat) \if (/= (rank mat) 2)

(raise "Expected a matrix.")

\lambda (x y) \let-seq

(def h (tally mat))

(def w (tally (car mat)))

\cond

((and (< x 0) (< y 0)) mat$[- (+ y 1)]$[- (+ x 1)])

((and (< x 0) (< y h)) mat$[#0 y]$[- (+ x 1)])

((and (< x 0) (>= y h)) mat$[- (- (* 2 h) 1) y]$[- (+ x 1)])

((and (< x w) (< y 0)) mat$[- (+ y 1)]$[#0 x])

((and (< x w) (>= y h)) mat$[- (- (* 2 h) 1) y]$[#0 x])

((and (>= x w) (< y 0)) mat$[- (+ y 1)]$[- (- (* 2 w) 1) x])

((and (>= x w) (< y h)) mat$[#0 y]$[- (- (* 2 w) 1) x])

((and (>= x w) (>= y h)) mat$[- (- (* 2 h) 1) y]$[- (- (* 2 w) 1) x])

\mat$[#0 y]$[#0 x])

(defun convolve-step (cell-mat kern x y) \let-seq

(def kern-h \tally kern)

(def kern-w \tally (car kern))

(case (/= kern-h kern-w)

\raise "Expected a square kernel.")

(case (or (/= (mod kern-h 2) 1) (/= (mod kern-w 2) 1))

\raise "Expected an odd-sized kernel.")

(def kern-c \floor (/ kern-w 2))

(def conv-range \flatten@outer-product

(range (- x kern-c) \- (+ x kern-w) kern-c)

(range (- y kern-c) \- (+ y kern-h) kern-c))

(def conv-mat \:$(lift cell-mat) conv-range)

\foldl + 0 * (flatten conv-mat) \flatten kern)

(defun public:convolve (mat kern) \let-seq

(def cell-mat (cell mat))

\parallel:map-idx (lambda (y row)

\parallel:map-idx (lambda (x _e)

\convolve-step cell-mat kern x y) row) mat)

(defun public:convolve-rgb (img kern) (let-seq

; Extract the R, G and B channels of the image data.

Chapter 2. Elementary data structures 43

(def r \$($(^/ 255)@bit:unpack _ '(0 8))%[0] img)

(def g \$($(^/ 255)@bit:unpack _ '(8 16))%[0] img)

(def b \$($(^/ 255)@bit:unpack _ '(16 24))%[0] img)

; Convolve each channel and convert back to integer values.

(defun quantize x (cond ((< x 0) 0) ((> x 1) 255) ((round@* x 255))))

(def r \quantize%[0] \public:convolve r kern)

(def g \quantize%[0] \public:convolve g kern)

(def b \quantize%[0] \public:convolve b kern)

; Merge the channels back together.

((lambda (r g b)

(bit:pack

(tie 0 8 r)

(tie 8 16 g)

(tie 16 24 b)

(tie 24 32 255)))%[0] r g b)))

"OK"

Finally, test the box blur on an image. Consider the following original, 256x256 RGB image:

Figure 2.1: peppers.jpg

Decrease numerical precision to speed up the computation. Create a 3x3 box blur kernel and apply
it to the image:

--> import "convolution.lisp"

OK

--> let ((fr 10)) (img:write "peppers-blurry.jpg" (convolve-rgb

... (img:read "peppers.jpg")

... (* (/ 9) '((1 1 1) (1 1 1) (1 1 1)))))

peppers-blurry.jpg

Other interesting operations to check are the Gaussian blur and edge detection:

--> import "convolution.lisp"

OK

--> let ((fr 10)) (img:write "peppers-gauss.jpg" (convolve-rgb

... (img:read "peppers.jpg")

... (* (/ 16) '((1 2 1) (2 4 2) (1 2 1)))))

peppers-gauss.jpg

--> let ((fr 10)) (img:write "peppers-edge.jpg" (convolve-rgb

Chapter 2. Elementary data structures 44

... (img:read "peppers.jpg")

... '((-1 -1 -1) (-1 8 -1) (-1 -1 -1))))

peppers-edge.jpg

(a) peppers-blurry.jpg (b) peppers-gauss.jpg (c) peppers-edge.jpg

To cover a different yet related topic, consider the problem of matrix multiplication7. Generally
speaking, matrix multiplication involves a series of dot products between the rows of the first matrix
and the columns of the second matrix. For example, consider the following two matrices:

--> def A '((1 3 2 0) (2 1 0 1) (4 0 0 2))

[[1 3 2 0]

[2 1 0 1]

[4 0 0 2]]

--> def B '((4 1) (0 3) (0 2) (2 0))

[[4 1]

[0 3]

[0 2]

[2 0]]

Start by transposing the second matrix and taking the outer product with *:

--> def B* (matrix:transpose B)

[[4 0 0 2]

[1 3 2 0]]

--> def C (outer-product * A B*)

(((4 0 0 0) (1 9 4 0)) ((8 0 0 2) (2 3 0 0)) ((16 0 0 4) (4 0 0 0)))

The only thing left is to sum each simple vector of the result, which is done as follows:

--> def D ($(foldl + 0)%[1] C)

[[4 14]

[10 5]

[20 4]]

7In APL and other programming languages, it is possible to compute the dot product, perform matrix
or tensor multiplication using the same construct - +.×.

Chapter 2. Elementary data structures 45

2.8. Searching and partitioning

Searching KamilaLisp lists is usually done using linear search. Linear search can be performed in two
ways - using the index-of function and the find functions. The former returns the index of the first
element that satisfies the predicate, while the latter returns the mask vector of all elements that satisfy
the predicate. Both of these functions were previously considered, however, consider these two cases
regardless:

--> index-of 3 '(1 2 3 4)

2

--> find "banana" "ana"

(0 1 0 1 0 0)

Linear search to no surprise can also be performed using filter. Consider the following function
that finds prime numbers in a unsorted list of arbitrary numbers:

--> def l \:random \cycle 10 '(10)

(6 5 9 2 3 3 1 3 6 9)

--> filter prime:is? l

(5 2 3 3 3)

Lists can be partitioned using bipartition and partition. The first function behaves alike to the
list partitioning facilities in OCaml. Consider the following function which partitions a list of numbers
into two lists - one containing all odd numbers and the other containing all even numbers:

--> def l \:random \cycle 10 '(10)

(6 4 2 8 1 8 1 3 4 3)

--> def even? $(^mod 2)

$['^mod, '2]

--> bipartition even? l

((1 1 3 3) (6 4 2 8 8 4))

The partition function is a bit more sophisticated - the lists are broken at the first occurrence of
1, continued through a span of zeroes and then broken again at the next occurrence of 1. Consider the
following example:

--> partition '(0 0 1 0 0 1 0 0) (range 1 9)

[[3 4 5]

[6 7 8]]

2.9. Pattern matching

Most functional languages, such as Haskell or OCaml, have pattern matching and destructuring fa-
cilities. KamilaLisp is no exception - pattern matching is performed using the match function. The
function takes as many arguments as necessary, each of them being a list of two elements - the pattern
and the expression to be evaluated. The patterns follow a special syntax. The following patterns are
supported:

• Binding patterns - 'a binds the value of a in the expression to the value being currently matched.

Chapter 2. Elementary data structures 46

• Literal patterns - "example" or (1 2 3) will abort trying to match the current pattern if the
value being matched is not equal to the literal.

• Pack patterns - '...a will bind the value of a to the rest of the list being matched - e.g.
('x '...xs) will match a list, where x will be defined as the head of the currently matched
value and xs will be defined as its tail.

Pattern matching allows for a few elegant implementations of common functions. Consider the
following implementation of the length function:

--> defun length x (match x (('x '...xs) (+ 1 \length xs)) (nil 0))

(λ x . (match x (('x '...xs) (+ 1 (length xs))) (nil 0)))

--> length '(a b c d)

4

The binding patterns can be used to implement an eq function, which tests for equality of two
atoms.

--> defun eq (x y) (match (tie x y) (('x 'x) 1) (('x 'y) 0))

(λ x y . (match (tie x y) (('x 'x) 1) (('x 'y) 0)))

--> eq 1 1

1

--> eq 1 2

0

The match statement also allows for the use of case guards, as demonstrated below on the example
of a function that checks whether a three-element list is sorted:

--> defun sorted (l) (match l (('x 'y 'z) (and (<= x y) (<= y z)) 1) ('_ 0))

(λ l . (match l (('x 'y 'z) (and (<= x y) (<= y z)) 1) ('_ 0)))

--> sorted '(6 5 4)

0

--> sorted '(1 2 3)

1

2.10. Sorting and permutations
A random permutation of a list of size n can be generated using range and shuffle. The permutation
can now be applied to a list of arbitrary elements as follows:

--> def perm \shuffle (range 0 10)

(1 2 8 6 4 3 0 5 9 7)

--> def l '(a b c d e f g h i j)

(a b c d e f g h i j)

--> ?l$[#0 perm]

(b c i g e d a f j h)

A matrix of all permutations of a list of size n is given by pmat:

--> pmat 3

Chapter 2. Elementary data structures 47

[(0 1 2)

(1 0 2)

(1 2 0)

(0 2 1)

(2 0 1)

(2 1 0)]

Permutations that sort an array in ascending or descending order based on a comparator function
or a partial order between some types of atoms can be computed using grade-up or grade-down:

--> ?perm

(1 2 8 6 4 3 0 5 9 7)

--> grade-up perm

(6 0 1 5 4 7 3 9 2 8)

--> ?perm$[grade-up perm]

(0 1 2 3 4 5 6 7 8 9)

A common family of problems that can be elegantly solved using sorting permutations involve
taking, dropping or removing first or last n elements of a list based on some criterion, e.g. the amount
of unique prime factors a number has.

Consider a list of n sets of natural numbers smaller than n, where the i-th set is the domain of some
function fi, for example:

--> ?domains

[(0 1 2)

(1)

(1 2)]

The data makes it apparent that the domain of f0 is {0, 1, 2}, the domain of f1 is {1} and the
domain of f2 is {1, 2}. The problem is to assign a unique natural number smaller than n to each of the
functions, so that it is contained in the function’s domain. In this example, the number 0 is assigned
to f0, 1 is assigned to f1 and 2 is assigned to f2. This problem is reminiscent of one-dimensional wave
function collapse8.

The standard procedure in approaching wave function collapse problems is to start with picking the
least entropic function, i.e. the function with the smallest domain. Then, fix random of the possibilities
and repeat the process until there is only one possibility left for each function. Of course, this approach
may not always yield a valid solution. Three common ways to deal with this are backtracking, resetting
the search space and starting from scratch or ignoring the existence of this problem altogether. The
book will demonstrate implementations of these approaches, starting with the simplest one.

Sort the functions according to their entropy in increasing order:

--> def p \grade-up \:tally domains

(1 2 0)

--> def sorted-domains domains$[#0 p]

[(1)

(1 2)

(0 1 2)]

8Two-dimensional wave function collapse can be used inter alia for texture generation and sudoku solving

Chapter 2. Elementary data structures 48

Recursively fix the first function’s domain to the first element of its domain and repeat the process
for the remaining functions, removing fixed element from the list of possibilities:

--> defun fix x (match x

... (nil

... 'nil)

... (('x '...xs)

... (cons (car x) (fix (:filter $(/= (car x)) xs)))))

Obtain the solution:

--> fix sorted-domains

(1 2 0)

The solution is different from the model solution from before. This is because the solution was
generated under the least-entropy criterion permutation, which needs to be undone to obtain the real
result. Using grade-up on a permutation obtained by using grade-up will unsort the vector:

--> ?(fix sorted-domains)$[grade-up p]

(0 1 2)

The solution can be recasted to be a stand-alone function now:

--> defun dom1 x (let-seq

... (def p \grade-up \:tally x)

... (defun fix x (match x

... (nil

... 'nil)

... (('x '...xs)

... (cons (car x) (fix (:filter $(/= (car x)) xs))))))

... (fix x$[#0 p])$[grade-up p])

Of course this solution does not address the problem mentioned before. The following crafted
example demonstrates the issue:

--> def domains '((1) (3 2) (4 3) (3 4 1))

The solution is clearly either '(1 2 4 3) or '(1 2 3 4). The simple algorithm fails, because it
will attempt to fix a 3 for f1, meaning that there are no remaining possibilities in the last slot and car

throws an exception:

--> dom1 domains

ArrayIndexOutOfBoundsException thrown in thread 0X75437611:

null

at entity dom1 8:1

at (λ x . (let-seq (def p (grade-up (:tally x))) ...)) 1:12

at entity let-seq 1:15

at let-seq primitive function

at entity (sic) $[]/syn. 8:4

at $[]/syn

Chapter 2. Elementary data structures 49

at entity fix 8:5

at (λ x . (match x ...)) 3:15

[...]

at entity match 3:18

at match primitive function

at entity cons 7:9

at entity car 7:15

at car primitive function

To implement the second mitigation method (fix random element from the domain of the first
function and repeat the process for the remaining functions, reset on error), the naive version can be
trivially modified:

--> defun dom2 x (let-seq

... (def p \grade-up \:tally x)

... (defun fix x (match x

... (nil

... 'nil)

... (('x '...xs)

... (let-seq

... (def e x$[random \tally x])

... (cons e (fix (:filter $(/= e) xs)))))))

... (try-catch (fix x$[#0 p])$[grade-up p] (&0 x)))

This function is obviously non-deterministic and will randomly return one of the correct solutions:

--> dom2 domains

(1 2 4 3)

--> dom2 domains

(1 2 3 4)

--> dom2 domains

(1 2 3 4)

--> dom2 domains

(1 2 4 3)

--> dom2 domains

(1 2 4 3)

Technically speaking, this function does not have to terminate. The third and final solution is
to use backtracking. To make the implementation more efficient, assume two cases. If the currently
considered function’s domain is empty, backtrack to the previous checkpoint. A checkpoint is placed
only when there is more than one possibility left for the function. When the checkpoint catches an
exception, it will try the next possibility. If there are no more possibilities, the exception is propagated
to the previous checkpoint, and so on. While this technique guarantees a solution in finite time if only
there exists one, in practice it tends to be slower than the previous solution. The code follows:

--> defun dom3 x (let-seq

... (def p \grade-up \:tally x)

... (defun fix x (match x

... (nil

... 'nil)

... (('x '...xs)

Chapter 2. Elementary data structures 50

... (let-seq

... (defun step x \cons x (fix (:filter $(/= x) xs)))

... (defun ckpoint x (

... try-catch

... (step \car x)

... (if (empty? \cdr x) (raise error) (&0 \cdr x))))

... (if (empty? \cdr x) (step \car x) (ckpoint x))))))

... (fix x$[#0 p])$[grade-up p])

The result is only one of the two correct solutions:

--> dom3 domains

(1 2 4 3)

--> dom3 domains

(1 2 4 3)

Going back to the topic of sorting, if knowing the permutation that sorts a list is not necessary, it
is more efficient to use the functions sort-asc and sort-desc. The basic usage of these functions is
demonstrated as follows:

--> sort-asc '(3 2 1)

(1 2 3)

--> sort-desc '(2 3 1)

(3 2 1)

--> sort-asc '("julia" "leah" "anna" "kamila" "lisa")

["anna"

"julia"

"kamila"

"leah"

"lisa"]

Of course, the functions sort-asc and sort-desc can process lists with a given comparator function
that provides a total order between atoms of desired type, hence as an example, it is possible to sort a
numeric list according to the absolute value:

--> sort-asc [- abs@#0 abs@#1] '(3 -2 1 6J-4 3J4 -19)

(1 -2 3 3J4 6J-4 -19)

2.11. Using glyphs
KamilaLisp in spirit of APL provides glyphs (or glyph combinations) for common operations. Using
the functions meta:to-glyphs and meta:to-ascii, it is possible to transform code that uses glyphs
into code that uses exclusively ASCII characters. The following example demonstrates the use of the
aforementioned functions:

--> meta:to-glyphs "defun dom3 x (let-seq

(def p \\grade-up \\:tally x)

(defun fix x (match x

(nil 'nil)

(('x '...xs)

Chapter 2. Elementary data structures 51

(let-seq

(defun step x \\cons x (fix (:filter $(/= x) xs)))

(defun ckpoint x (

try-catch

(step \\car x)

(if (empty? \\cdr x) (raise error) (&0 \\cdr x))))

(if (empty? \\cdr x) (step \\car x) (ckpoint x))))))

(fix x$[#0 p])$[grade-up p])"

⍥← dom3 x (○⊢¨

(○← p \⍋ \:⍴ x)

(⍥← fix x (→ x

(⍬ '⍬)

(('x '...xs)

(○⊢¨

(⍥← step x \⍟ x (fix (:⍭ $(≠ x) xs)))

(⍥← ckpoint x (‼

(step \⍎ x)

(↕ (⍠⍉? \⍕ x) (↑‼ error) (&0 \⍕ x))))

(↕ (⍠⍉? \⍕ x) (step \⍎ x) (ckpoint x))))))

(fix x$[#0 p])$[⍋ p])

2.12. Strings and regular expressions
KamilaLisp offers a dozen of string processing functions. Changing the case of letters in a string is
done using str:upper and str:lower as follows:

--> str:upper "Hello"

HELLO

--> str:lower "I am Kamila"

i am kamila

String formatting should already be familiar to the reader from the previous parts of the book:

--> str:format "Hello! Your dice roll is {random 6}."

Hello! Your dice roll is 2.

--> str:format "Braces: {{}}."

Braces: {}.

String splitting can be done in a variaty of ways. The specialised function str:lines splits a string
into a vector of lines:

--> str:lines (io:get-file "/etc/shells")

["# /etc/shells: valid login shells"

"/bin/sh"

"/bin/bash"

"/usr/bin/bash"

"/bin/rbash"

"/usr/bin/rbash"

"/bin/dash"

Chapter 2. Elementary data structures 52

"/usr/bin/dash"

"/bin/zsh"

"/usr/bin/zsh"

"/usr/bin/sh"]

A more general solution is to use regex:split, which splits a string on every occurence of a regular
expression.

--> regex:split ":" (sh:getenv "PATH")

["/usr/local/sbin"

"/usr/local/bin"

"/usr/sbin"

"/usr/bin"

"/sbin"

"/bin"]

The two other uses of regular expressions in KamilaLisp entail matching and replacing. The
regex:matches? function determines whether the given string matches a regular expression:

--> regex:matches? "[A-Za-z]+" "AlphanumericString"

1

Finding matches in a string is done using regex:match-all:

--> (regex:match-all "[A-Za-z]+"

"The quick brown fox jumps over the lazy dog."

(lambda (m) m.match))

["The"

"quick"

"brown"

"fox"

"jumps"

"over"

"the"

"lazy"

"dog"]

The third argument to regex:match-all is a function that is applied to each match. The function
is passed a match object, which contains the following fields:

• match - the matched string.

• offset - offset of the match.

• length - the length of the match.

• groups - a vector of matched groups, each containing the match, offset, length fields.

Chapter 3

Functional data structures

This chapter describes more intricate details regarding more complex data structures, their represen-
tations in functional programs and their applications in the context of real-world problems.

3.1. Combinator calculi
Combinatory logic is a notation to eliminate the need for quantified variables in mathematical logic. It
is based on combinators, which were introduced by Schönfinkel with the idea of providing an analogous
way to build up functions, and to remove any mention of variables. A combinator is a higher-order
function that uses only function application and earlier defined combinators to define a result from its
arguments. Implementation of various combinators in KamilaLisp is generally very straightfoward, due
to the language’s functional nature.

There are many different combinator calculi, but the SKI basis is used the most commonly. It is
based on three combinators, S, K and I, which are defined as follows:

• S is the substitution combinator, which takes three arguments and applies the first to the second
and third, then applies the result to the third argument. It is defined as (λ x y z . x z (y z)).

• K is the constant combinator, which takes two arguments and returns the first one. It is defined
as (λ x y . x).

• I is the identity combinator, which takes one argument and returns it. It is defined as (λ x . x).

These combinators can be used to define any other combinator, because the SKI basis is complete.
It is important to note that the SK basis on its own would also be complete, since the I combinator
can be written in the SK basis as follows:

SKK = (λ x y z . x z (y z)) (λ x y . x) (λ x y . x)

= (λ x y x) (λ x x)

= (λ x . x)

= I

These definitions can be easily translated into KamilaLisp:

--> def S (λ x (λ y (λ z ((x z) (y z)))))

(λ x . (λ y (λ z ((x z) (y z)))))

--> def K (λ x (λ y x))

(λ x . (λ y x))

--> def I (λ x x)

(λ x . x)

Chapter 3. Functional data structures 54

This allows for the further verification of the hypothesis that SKK = I:

--> ((S K) K) 'a

a

There are infinitely many combinators that can be expressed in the SK basis, a few of which are
given below:

• A (apply) - SK(SK) - λ a b . a b, known as $ in Haskell.

• B (bluebird) - S(KS)K - λ a b c . a (b c), known as . in Haskell.

• C (cardinal) - S(BBS)(KK) - λ a b c . a c b, known as flip in Haskell.

• T (thrush) - CI - λ a b . b a, known as (&) in Haskell.

• R (robin) - BBT - λ a b c . b c a.

Three particularly interesting combinators are the ω, Ω and Y combinators. The ω combinator is
defined as λ x . x x, primarily useful for duplicating a function, for example:

ω (λ x . x + 1) = (λ x . x x) (λ x . x + 1)

= (λ x . x + 1) (λ x . x + 1)

= (λ x . (x + 1) + 1)

= λ x . x + 2

The Ω combinator is defined as ω ω = (λ x . x x) (λ x . x x). Consider an attempt at evalu-
ating this expression:

Ω = ω ω = (λ x . x x) (λ x . x x) = (λ x . x x) (λ x . x x) = ...

It is clearly impossible to ascribe a value to this expression, since the attempts at β-reduction will
be unsuccessful, which makes the Ω combinator a curious and instructive introduction to the concept
of the fixed point combinator.

In combinatory logic for computer science, a fixed-point combinator is a higher-order function that
returns some fixed point of its argument function, if one exists. Intuitively, fixf = f(fixf). The
implementation of the fixed-point combinator that is of particular interest is the Y combinator. It is
defined as follows:

Y = λ f . (λ x . f (x x)) (λ x . f (x x))

The most interesting thing about the Y combinator is that it can be used to formally define recursive
functions in a notation that does not support recursion. Of course, Y Y can not be ascribed a value
per Y f = f (Y f) and hence Y Y = Y (Y Y). Consider the following definition of the Y combinator
in KamilaLisp:

--> defun Y f ((λ x \x x) (λ x \f \λ y \(x x) y))

(λ f . ((λ x (x x)) (λ x (f (λ y ((x x) y))))))

This definition can be used to define a canonical example of a recursive function, the Ackermann
function - earliest-discovered examples of a total computable function that is not primitive recursive:

Chapter 3. Functional data structures 55

A(0, n) = n+ 1
A(m+ 1, 0) = A(m, 1)
A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

The definition of the Ackermann function using the Y combinator in KamilaLisp is given by:

--> def A \Y (lambda f (lambda a

... (if (= (car a) 0) (+ (cadr a) 1)

... (if (= (cadr a) 0) (f \tie (- (car a) 1) 1)

... (f \tie (- (car a) 1) (f \tie (car a) (- (cadr a) 1)))))))

The invocation requires putting the arguments in a list and passing it to the function:

--> A '(3 3)

61

A simpler example would be the factorial function:

--> def fact \Y (lambda f (lambda x

... (if (= x 0) 1 (* x \f (- x 1)))))

--> fact 10

3628800

An evaluator for SKI calculus can be written by merging together a few independent parts. Starting
with a function that performs a single evaluation step on a properly parenthesised SKI expression:

(defun SKI-step x

(match x

(((S K) 'x) 'I)

(((S (K (S K))) K) '(S K))

(((S (K (S (S K)))) K) 'K)

((((S 'x) 'y) 'z) (tie (tie x z) (tie y z)))

(((K 'x) 'y) x)

((I 'x) x)

(('x 'y) (tie (SKI-step x) (SKI-step y)))

('x x)))

The evaluation function minds various special cases including SKx=I and S(K(SK))K=SK, as they
are impossible to derive using standard term-rewriting combinator calculi β-reduction (rudimentary
η-expansion would be required1). The next step is to define a function that properly parenthesises a
SKI expression:

(defun SKI-lp x

(match (reverse x)

(('a) (SKI-lp a))

(('a '...as) (tie (SKI-lp (reverse as)) (SKI-lp a)))

('a a)))

1Barendregt’s ”The Lambda Calculus” provides an extension to the CL theory with a list of 5 Aβ axioms.
Corollary 7.3.15 states that CL + Aβ is equivalent to λ, hence in principle one can use only these laws to
prove the special cases, however implementing this is beyond the scope of this book.

Chapter 3. Functional data structures 56

The final step is to combine these functions and converge the step function:

(defun SKI x (converge SKI-step (SKI-lp x)))

Validity of the code can be rudimentarily verified by evaluating an expression with known result:

--> SKI '(S I I K)

(K K)

--> ; SIIK=((SI)I)K=(IK)(IK)=KK

3.2. Church encoding

In mathematics, Church encoding is a method of representing data and operators in the lambda calculus.

3.2.1. Natural numbers

The Church numerals are the representations of natural numbers under Church encoding. They can be
easily defined in terms of iterated function composition:

Number Function definition
0 0 f x = x
1 1 f x = f x
2 2 f x = f (f x)
3 3 f x = f (f (f x))
...

...
n n f x = fn x

This concept can be trivially translated into KamilaLisp. For example, the Church numerals for 0
and 3 are given by:

--> defun c0 f #0

(λ f . #0)

--> defun c3 f (λ x (f (f (f x))))

(λ f . (λ x (f (f (f x)))))

To verify the correctness of this definition and further experiments with Church numerals, the
following function is defined to convert an arbitrary Church-encoded numeral into a natural number:

--> defun nat f ((f $(+ 1)) 0)

(λ f . ((f $(+ 1)) 0))

--> nat c3

3

This function utilises the fact that Church encoding is in fact identical to iterated function compo-
sition, hence the natural successor function $(+ 1) can be applied to it with a starting value of 0. To
obtain the Church numeral for any natural number, define the following successor function:

--> defun succ x (λ f (λ a (f ((x f) a))))

(λ x . (λ f (λ a (f ((x f) a)))))

Chapter 3. Functional data structures 57

Using these, it is possible to verify that succ(succ(0)) = 2:

--> nat (succ (succ c0))

2

Using these properties, it is possible to define a function that yields the Church-encoded numeral
for any given natural number:

--> defun church n (if n (succ (&0 (- n 1))) c0)

(λ n . (if n (succ (&0/syn (- n 1))) c0))

--> nat (church 5)

5

Before giving more examples of operations on Church numerals, it is important to point out that
using the helper functions church and nat or built-in natural number arithmetic functions would
completely defeat the purpose of Church encoding in the first place, hence they will be used only to
verify concrete results, and not to define new functions.

Addition of Church numerals can be easily defined in terms of their composition as fm+n x =
fm(fnx), arguing for two definitions - one using the succ function and the other using the identity
verbatim:

--> defun add (x y) ((x succ) y)

(λ x y . ((x succ) y))

--> nat (add (church 3) (church 5))

8

--> defun add (m n) (λ f (λ x ((m f) ((n f) x))))

(λ m n . (λ f (λ x ((m f) ((n f) x)))))

--> nat (add (church 6) (church 5))

11

Multiplication of Chruch numbers follows the same rule, fm×n x = fm(fnx). It is important
to notice what role the function composition aspect of Church numerals plays in this definition: the
function f is applied to the result of the composition of n copies of f, which is then applied to x. Notice
how currying is used to avoid the need for explicit application of x:

--> defun mul (m n) (λ f (m (n f)))

(λ m n . (λ f (m (n f))))

--> nat \mul (church 5) (church 6)

30

Exponentiation follows the same rule and can be very succinctly defined as follows due to currying:

--> defun cexp (m n) (n m)

(λ m n . (n m))

--> nat \cexp (church 5) (church 3)

125

Subtraction is considerably more difficult to define. The natural numbers form a commutative
monoid (N,+, 0). A binary relation ∼ on this monoid is defined as m ∼ n if and only if m = n + k
for some k ∈ N. ∼ is obviously reflexive and transitive, while N is also naturally ordered since ∼ is

Chapter 3. Functional data structures 58

also antisymmetric, making it a partial order. Furthermore, for all pairs of elements a ∈ N and b ∈ N
there exists a unique smallest element k such that a ∼ b + k, hence N is a commutative monoid with
monus, a −̇ b of any two elements a and b, which can be defined as this unique smallest element k such
that a ∼ b + k. In N the monus operator is a saturating variant of standard subtraction between two
integers such that a −̇ b = max(a− b, 0).

To implement saturating subtraction, a predecessor function needs to be defined such that pred(0) =
0 and pred(n+1) = n for all n ∈ N, hence the predecessor function must return a function that applies
its parameter n− 1 times. This is achieved by building a container around f and x, which is initialized
in a way that omits the application of the function the first time:

--> defun pred n (λ f (λ x (((n (λ g (λ h (h (g f))))) (λ u x)) (λ u u))))

(λ n . (λ f (λ x (((n (λ g (λ h (h (g f))))) (λ u x)) (λ u u)))))

--> nat (pred (church 5))

4

This definition of pred can be simplified using the K and I combinators, however it is required to
define a new combinator F = λ a b c . c (b a), which can be written written in terms of B and T
as B(B T)T:

--> def F (λ a (λ b (λ c (c \b a))))

(λ a b c . (c (b a)))

--> defun pred x (λ f (λ a (((x (F f)) (K a)) I)))

(λ x . (λ f (λ a (((x (F f)) (K a)) I))))

--> nat (pred (church 5))

4

--> nat (pred (church 0))

0

It is sufficient to apply the pred function to a Church numeral m, n times to obtain the Church
numeral m− n. Once again, this can be done by using currying and the fact that a Church numeral is
essentially iterated application of a function:

--> defun sub (m n) ((n pred) m)

(λ m n . ((n pred) m))

--> nat (sub (church 5) (church 3))

2

--> nat (sub (church 3) (church 5))

0

3.2.2. Boolean domain

Boolean numbers can also be encoded using Church encoding. It is perhaps not very surprising, since
B = {0, 1}, arguing for the following definitions of true and false:

--> defun bt f (λ x (f x))

(λ f . (λ x (f x)))

--> defun bf f (λ x x)

(λ f . (λ x x))

However, it is more convenient to define them as combinators, so that T t f = t and F t f = f,
which can be done as follows:

Chapter 3. Functional data structures 59

--> def T (λ t (λ f t))

(λ t f . t)

--> def F (λ t (λ f f))

(λ t f . f)

This definition allows predicates (functions returning logical values) to directly act as if-clauses.
A function returning a Boolean, which is then applied to two parameters, returns either the first or
the second parameter. Consequently, functions that convert between Church-encoded Booleans and
standard natural numbers are given as follows:

--> defun b2n b ((b 1) 0)

(λ b . ((b 1) 0))

--> defun n2b n (if n T F)

(λ n . (if n T F))

It is important to point out that true and false are defined canonically using the SK basis as
T = K and F = SK. This definition allows for a particularly elegant definition of negation, as the t and
f arguments are simply swapped:

--> defun bnot b ((b F) T)

(λ b . ((b F) T))

--> b2n \bnot T

0

--> b2n \bnot F

1

To define negation in terms of the SKI basis it is sufficient to use the C combinator, which is defined
as C = λ a b c . a c b, and written as S(BBS)(KK), which in turn β-reduces using the definition of
B to S(S(K(S(KS)K))S)(KK). The validity of this reasoning is verified when applying this expression to
K and SK:

--> SKI '(S(S(K(S(K S)K))S)(K K) (S K))

K

--> SKI '(S(S(K(S(K S)K))S)(K K) K)

(S K)

The next two operations to implement for Boolean values is logical AND and OR conjunctions:

--> defun bor x (λ y ((x T) y))

(λ x . (λ y ((x T) y)))

--> defun band x (λ y ((x y) F))

(λ x . (λ y ((x y) F)))

Verify the truth tables:

--> defun tabulate f (discard \

... :(lambda x \io:writeln \str:format

... "{b2n \\car x} f {b2n \\cadr x} = {b2n \\(f (car x)) (cadr x)}")

... (tie (tie T T) (tie T F) (tie F T) (tie F F)))

Chapter 3. Functional data structures 60

--> tabulate bor

1 f 1 = 1

1 f 0 = 1

0 f 1 = 1

0 f 0 = 0

--> tabulate band

1 f 1 = 1

1 f 0 = 0

0 f 1 = 0

0 f 0 = 0

Of course, the band and bor functions can also be written in the SKI basis. It is apparent that
band = R(KI) and bor = TK. Per the definitions of these combinators:

band = R(KI)

= (BBT)(KI)

= (BB(CI))(KI)

= (BB(S(BBS)(KK)I))(KI)

= ((S(KS)K)(S(KS)K)(S((S(KS)K)(S(KS)K)S)(KK)I))(KI)

bor = TK

= (CI)K

= (S(BBS)(KK)I)K

= (S((S(KS)K)(S(KS)K)S)(KK)I)K

3.2.3. Natural number division and comparisons

Elementary comparisons between Church-encoded natural numbers are rather straightforward. The
following definitions of leq? and zero? are given as follows:

--> defun zero? n ((n (λ x F)) T)

(λ n . ((n (λ x F)) T))

--> defun leq? n (λ m (zero? (sub n m)))

(λ n . (λ m (zero? (sub n m))))

The definition of zero? uses the fact that a Church number greater than zero will iterate the function
(λ x F) at least once, while a zero (an identity function) will simply yield T. The second function that
utilises the monus operator uses sub and zero? to determine whether the first number is less than or
equal to the second number. Defining equality involves computing the absolute difference between two
numbers, given as |a− b| = (x−̇y) + (y−̇x):

--> defun eq? n (λ m (zero? (add (sub n m) (sub m n))))

(λ n . (λ m (zero? (add (sub n m) (sub m n)))))

Other kinds of inequalities can be defined using these functions as follows:

--> defun gt? n (λ m (bnot ((leq? n) m)))

(λ n . (λ m (bnot ((leq? n) m))))

--> defun lt? n (λ m ((gt? m) n))

(λ n . (λ m ((gt? m) n)))

--> defun geq? n (λ m (bnot ((lt? n) m)))

(λ n . (λ m (bnot ((lt? n) m))))

Chapter 3. Functional data structures 61

Defining the division of Church-encoded natural numbers is considerably more involved than mul-
tiplication or exponentiation. To define division in N, consider the numbers a, b ∈ N such that b 6= 0.
It is apparent that in ∃1q, r ∈ N : a = qb+ r, r < b where q is the quotient and r is the remainder. The
following definition of division is based on this observation:

n/m = if n ≥ m then 1 + (n−m)/m else 0

This mathematical definition can be easily written in KamilaLisp:

--> defun div n (λ m (((

... ((geq? n) m)

... (λ _ \succ ((div (sub n m)) m)))

... (λ _ c0)) 'nil))

--> nat \(div c6) c3

2

--> nat \(div c6) (succ (succ c0))

3

--> nat \(div c6) (succ c0)

6

Curiously, division by zero overflows the stack:

--> (div c3) c0

StackOverflowError thrown in thread 0X7ef82753:

null

The definition of modulus can be easily conjectured using already implemented truncating division:

n mod m = n− (n/m) ·m

Transcribing this definition into KamilaLisp:

--> defun cmod n (λ m (sub n (mul ((div n) m) m)))

(λ n . (λ m (sub n (mul ((div n) m) m))))

--> nat \(cmod c6) (succ c3)

2

3.2.4. Pairs

Church pairs are the Church encoding of the pair type. The pair is represented as a function that takes
a function argument. When given its argument it will apply the argument to the two components of
the pair. The definition of Church pairs in KamilaLisp is as follows:

--> defun pair (x y) (λ f ((f x) y))

(λ x y . (λ f ((f x) y)))

--> def fst (λ p (p K))

(λ p . (p K))

--> def snd (λ p (p (K I)))

(λ p . (p (K I)))

It is easy to verify the correctness of this approach:

Chapter 3. Functional data structures 62

--> fst (pair 'a 'b)

a

--> snd (pair 'a 'b)

b

Pairs are canonically used in implementing signed Church numerals, where each signed Church
numeral is a pair of two Church-encoded natural numbers, the first representing the positive part
and the second representing the negative part. Consequently, rational numbers can be encoded as a
pair of a signed Church numeral and a Church-encoded natural number, where the earlier represents
the numerator, while latter represents the denominator. Using similar logic, it is also possible to
encode computable real numbers, i.e. numbers that can be approximated by some computable function
f : N → Z such that given any n ∈ N, the following holds:

f(n)− 1

n
≤ a <

f(n) + 1

n

Complex numbers are naturally encoded as a pair of real numbers.

3.2.5. Lists

Exploring the Church encoding for lists is particularly beneficial for encoding other, more complex data
structures. In practice, a string can be encoded as a list of code points, a graph can be encoded as a
list of edges, and a tree can be encoded as a list of nodes. This adheres to the Church-Turing thesis, a
consequence of which is that any data type or calculation may be encoded in lambda calculus.

There are many ways to encode lists using the Church encoding. The most straightforward of them
is to use pairs to build up a linked list. It is obvious that cons can be defined as pair, car is fst, cdr
is snd and nil is F. cempty? is thus defined as follows:

--> defun cempty? l ((l (λ h \λ t \λ d F)) T)

(λ l . (l (λ _ F) T))

--> b2n \cempty? F

1

--> b2n \cempty? (pair 'a (pair 'b F))

0

Given these functions, it is possible to give recursive implementations of common list-related ab-
stractions over recursion (map, foldl, foldr, filter, etc.).

The canonical way to represent a list in Church encoding is to define it as a right-fold with the
cons and nil arguments, so that for example '(1 2 3) becomes λ c n . c 1 (c 2 (c 3 n)). nil is
particularly easy to define, as it merely returns the n component of the argument pair:

--> def cnil (λ (c n) n)

(λ c n . n)

ccons is a function of an element x and a list xs, so that it yields λ c n . c x (xs c n) - creating
a new ”cons cell” and setting its nil value to the list:

--> defun ccons (x xs) (λ (c n) (c x (xs c n)))

(λ x xs . (λ (c n) (c x (xs c n))))

Chapter 3. Functional data structures 63

Because this Church-encoded list is essentially a right-fold, it is easy to write functions that convert
from Church-encoded lists to regular lists and vice versa:

--> defun to-list (l) (l cons 'nil)

(λ l . (l cons 'nil))

--> defun from-list (l) (foldr ccons cnil l)

(λ l . (foldr ccons cnil l))

--> to-list \ccons 'a \from-list '(b c)

(a b c)

As demonstrated in Chapter 2, right-folds are extremely powerful and can be used to implement
append, map, filter and many other list processing devices. Implementations of append and all are
presented below:

--> defun cappend (xs ys) (lambda (c n) (xs c (ys c n)))

(λ xs ys . (lambda (c n) (xs c (ys c n))))

--> to-list \cappend (from-list '(a b)) (from-list '(c d))

(a b c d)

--> defun call (xs p) (xs (lambda (x xs) (and (p x) xs)) true)

(λ xs p . (xs (lambda (x xs) (and (p x) xs)) true))

--> call (from-list '(1 2 3 4 5)) (lambda x (< x 5))

0

--> call (from-list '(1 2 3 4)) (lambda x (< x 5))

1

3.3. Sets

Sets in KamilaLisp don’t differ fundamentally from lists. KamilaLisp sets are ordered, meaning that
operations on them such as union, intersection, taking the unique values, etc... - are all performed in
a deterministic manner. As a consequence, sets already inherit many useful list functions, such as map,
filter and all sorts of folds. Functions specific to sets are demonstrated below:

--> union '(1 2 3 5 6) '(2 3 5 7)

(1 2 3 5 6 7)

--> intersection '(1 2 3 5 6) '(2 3 5 7)

(2 3 5)

--> unique '(1 2 3 5 6)

(1 2 3 5 6)

--> without '(1 2 3 5 6) '(5 6)

(1 2 3)

--> powerset '(1 2 3)

[nil

(1)

(2)

(1 2)

(1 3)

(2 3)

(1 2 3)

(3)]

Chapter 3. Functional data structures 64

Set insertion is admittedly not a built-in function, but it can be easily implemented using cons and
in?:

--> defun set-insert (el set) (if (in? el set) set (cons el set))

(λ el set . (if (in? el set) set (cons el set)))

--> set-insert 5 '(1 2 3 4)

(5 1 2 3 4)

--> set-insert 5 '(1 2 3 4 5)

(1 2 3 4 5)

3.4. Queues
Queues are implemented in KamilaLisp using lists. This section will focus primarily on LIFO2 queues,
FIFO3 queues and priority queues. KamilaLisp generally encourages ad-hoc implementations of queues,
since the elementary operations on LIFO and FIFO queues can be trivially implemented using list
processing functions. For example, pop-front could be implemented as [tie car cdr], push-back
is just append while push-front is cons. Because KamilaLisp internally equates lists and vectors,
this approach generally exhibits good performance characteristics. It is however possible to implement
FIFO queues using two stacks4: an inbox and outbox. This way pushing an element to the queue is
merely adding an element to the inbox FIFO stack, while popping from the queue reduces to popping
from the outbox if it is non-empty. If the outbox is empty, data from inbox is transferred to outbox:

--> defun alt-q-push (el q) (tie (cons el (car q)) (cadr q))

--> defun alt-q-pop q (

... if (empty? \cadr q)

... (&0 \[tie cadr car] q)

... ([tie car@cadr \tie car cdr@cadr] q))

The implementation of a priority queue is a bit more involved. While insertion into a priority queue
could be implemented by simply appending the new element to the queue and sorting it according
to the priorities, this would be a rather inefficient solution. Instead, the following implementation of
priority queue insertion is suggested:

--> (defun insert-pq (q el)

... \insert q el

... \count (lambda x \< (car x) (car el)) q)

This function takes a priority queue q and an element el and inserts el into q at the correct position.
The insert function is a generic function that takes a list, an element and a position and inserts the
element at the given position. The count function in this scenario counts elements with priority smaller
than the priority of el.

One algorithm that particularly benefits from priority queues is Huffman coding. Huffman coding
is a lossless compression algorithm that uses a variable-length code to represent the most common
symbols in a file. The algorithm is based on the observation that symbols that occur more frequently in
a file can be represented with fewer bits than symbols that occur less frequently. The algorithm works
by building a binary tree, where the leaves are the symbols in the file and the internal nodes are the

2LIFO: Last-In-First-Out
3FIFO: First-In-First-Out
4As conventionally done in OCaml or Haskell, since a linked list can be inexpensively used as a FIFO

stack.

Chapter 3. Functional data structures 65

sums of the frequencies of the symbols in the leaves below them. To implement Huffman coding, start
by computing the frequencies of each symbol in a buffer buf and sorting the symbols by the frequencies
in ascending order:

--> def freq-tab \:[tie tally@cadr car] \group buf

--> def freq-sorted freq-tab$[grade-up \car%[1] freq-tab]

The next step is to define a function that performs a single iteration of the tree building algorithm.
The two least common symbols are combined into a single symbol, which is then inserted into the list
of symbols in the correct position with combined frequencies:

--> (defun huffman-step pq

... \if (= 1 \tally pq) pq

... \insert-pq (cddr pq)

... \tie (+ (caar pq) (car@cadr pq))

... (tie (cadr@car pq) (cadr@cadr pq)))

The Huffman tree can be finally built by converging the step function:

--> def huffman-tree \car@cdar \converge huffman-step freq-sorted

To encode symbols in the buffer using the huffman tree, it needs first be labelled with the bit
sequences that represent the symbols. This is accomplished in the following way:

--> (defun tag (t code) (

... if (= 0 \tally t)

... (tie t (reverse code))

... (append (tag (car t) (cons 0 code))

... (tag (cadr t) (cons 1 code)))))

--> (def huffman-tab \bipartition rank \tag huffman-tree 'nil)

Given the Huffman table, it is now possible to encode the buffer. Because Huffman codes are
variable-length, it is important that the encoded buffer is padded with zeros to the nearest multiple of
8 to form a full byte. This is accomplished by the following function:

--> (def encoding-ids

... \flatten (car huffman-tab)$[

... $(car@index-of&[tie #0])%[0 1] buf (cdr huffman-tab)])

--> def padded \take (bit:and (+ (tally encoding-ids) 7) -8) encoding-ids

Finally, instead of encoding all the auxiliary data into a buffer or file, for simplicity return the
huffman table, encoded bits and the bit length verbatim:

--> (tie (tally encoding-ids) huffman-tab

\:$(- _ 128)@:$(decode 2)

\partition (cycle (tally padded) (take 8 '(1))) padded)

To reverse the encoding process, assume that buf is now defined as the result above. First, the bit
stream, bit length and huffman table are extracted from the buffer:

Chapter 3. Functional data structures 66

--> def bit-len (car buf)

--> def huffman-table (cadr buf)

--> (def bit-stream (take bit-len

... \flatten@:(lambda x \reverse@take 8 \reverse@encode 2 (+ 128 x))

... \car@cddr buf))

The step function that performs a single iteration of the decoding algorithm is defined as follows:

--> (defun unhuffman-step (stream dec) (let-seq

... (def match-idx \car@where@:starts-with (tie stream) (car huffman-table))

... (def match-len \tally (car huffman-table)$[#0 match-idx])

... (def new-dec (append dec \tie (cadr huffman-table)$[#0 match-idx]))

... (def new-stream (drop match-len stream))

... (if (= 0 \tally new-stream) new-dec \&0 new-stream new-dec)))

First, the function finds the Huffman table entry index which is the prefix of the bit stream (match-
idx). Then the length of the prefix is computed. The decoded symbol is then appended to the decoded
buffer and the prefix is dropped from the bit stream. The function is then recursively applied to the
remaining bit stream and the new decoded buffer. Finally, the function is applied as follows:

--> unhuffman-step bit-stream 'nil

3.5. Dictionaries
KamilaLisp implements dictionaries as persistent maps. Like every other data structure in KamilaLisp,
they are immutable. Dictionaries in KamilaLisp are chiefly used as key-value storage and in process
of implementing prototype-based object orientation. The following example illustrates dictionary con-
structors:

--> def fruits %{

... "apple" => "Apfel",

... "pear" => "Birne",

... "apricot" => "Aprikose"

... }

--> def digits %{

... 1 => '("Ein" "One"),

... 2 => '("Zwei" "Two"),

... 3 => '("Drei" "Three"),

... 4 => '("Vier" "Four")

... }

It is important to emphasise that KamilaLisp primarily employs data constructors, not literals. This
means that the dictionary constructors demonstrated above are not literals, but rather functions with
special syntax that return dictionaries. The only way to create a literal is to quote data. The difference
between data constructors and literals is illustrated on the following example:

--> def a 5

5

--> def my-map %{

Chapter 3. Functional data structures 67

... a => 'a,

... 'a => 'a,

... (+ a 5) => 'a

... }

{5=a, 10=a, a=a}

Adding and removing data to and from dictionaries is done using the hashmap:adjoin and hashmap:minus.
The following example illustrates the usage of these functions:

--> def fruits-b \hashmap:adjoin fruits "banana" "Banane"

{"pear"="Birne", "apple"="Apfel", "banana"="Banane", "apricot"="Aprikose"}

--> def digits-3 \hashmap:minus digits 3

{1=("Ein" "One"), 2=("Zwei" "Two"), 4=("Vier" "Four")}

A dictionary can be turned into or created from a plain list using hashmap:as-list and hashmap:from-

list, respectively:

--> hashmap:as-list digits

((1 ("Ein" "One")) (2 ("Zwei" "Two")) (3 ("Drei" "Three")) (4 ("Vier" "Four")))

--> hashmap:from-list '(("one" "Ein") ("two" "Zwei"))

{"one"="Ein", "two"="Zwei"}

The functions hashmap:contains-key? and hashmap:contains-value? can be used to check whether
a dictionary contains a given key or value:

--> hashmap:contains-key? digits 3

1

--> hashmap:contains-value? digits '("Drei" "Three")

1

--> hashmap:contains-key? digits-3 3

0

--> hashmap:contains-value? digits-3 '("Drei" "Three")

0

There are three different ways to query values from a dictionary. The first, general way allows to
query a dictionary for a given key using hashmap:get and return nil if the key is not present in the
dictionary. The second way is to use hashmap:get-or which returns the given default value if the key
is not present in the dictionary. The last way is to use the dot operator to query the value of a given
key of type string. The following example illustrates the usage of all these approaches:

--> hashmap:get digits 3

["Drei"

"Three"]

--> hashmap:get digits 5

--> hashmap:get-or digits 5 '("Funf" "Five")

["Funf"

"Five"]

--> ?my-dict.pear

Birne

--> ?my-dict.apple

Apfel

--> ?my-dict.potato

Chapter 3. Functional data structures 68

Dictionaries also implement a modified version of group that groups the values of a list and creates
a dictionary from the result. The following example illustrates the usage of this functionality:

--> def data '("apple" "pear" "apple" "pear" "pear" "apricot")

["apple"

"pear"

"apple"

"pear"

"pear"

"apricot"]

--> hashmap:group data

{"pear"=(1 3 4), "apple"=(0 2), "apricot"=(5)}

Merging and subtracting dictionaries is performed using the hashmap:merge and hashmap:without

functions. When merging, existing keys are overwritten. When subtracting, keys from the second
dictionary that are present in the first dictionary are removed.

--> hashmap:merge %{1 => 2, 3 => 4} %{1 => 3, 2 => 6}

{1=3, 2=6, 3=4}

--> hashmap:without %{1 => 2, 3 => 4} %{1 => 3, 2 => 6}

{3=4}

Finally, maps can be turned into a list of keys or a list of values using hashmap:key-list and
hashmap:value-list, respectively:

--> hashmap:key-list fruits

["pear"

"apple"

"apricot"]

--> hashmap:value-list fruits

["Birne"

"Apfel"

"Aprikose"]

The joint key-value pairs from a dictionary can be processed using hashmap:process:

--> hashmap:process %{1 => 1, 2 => 4, 3 => 9, 4 => 16} :[tie car $(* 2)@cadr]

{1=2, 2=8, 3=18, 4=32}

3.6. Relations
Formally speaking, a (binary) relation ∼ over a set X can be seen as a set of ordered pairs (x, y) of
members of X. The relation ∼ holds between x and y if (x, y) is a member of ∼. In KamilaLisp, such
relation can also be seen as a function ∼: X×X → B, where ∼ (x, y) = 1 if (x, y) is a member of ∼ and
∼ (x, y) = 0 otherwise. Generally speaking, it is impossible to ascribe properties to relations defined as
a function on an infinite set (e.g. R, like the built-in relations /= or <) without symbolic manipulation.
When studying the properties of relations (reflexivity, transitivity, etc...) it is therefore vital to define a
relation as a finite set of ordered pairs. It is also allowed for a binary relation to associate the elements
of one set (the domain) with the elements of another set (the codomain). If this is the case, a binary
relation over sets X and Y is an element of the power set X × Y . Since the latter set is ordered by

Chapter 3. Functional data structures 69

inclusion, each relation has a place in the lattice of subsets of X × Y . A binary relation is called a
homogeneous relation when X = Y . A binary relation is also called a heterogeneous relation when it is
not necessary that X = Y . Union of relations is defined like the union of sets: if ∼ and ∼′ are relations
over X, then ∼ ∪ ∼′= {(x, y) : x ∼ y ∨ x ∼′ y}. For example, the union of the relations < and > is the
relation /=. Intersection of relations follows the same pattern. If ∼ is a relation over X and Y and ∼′

is a relation over Y and Z, then the composition of these relations - denoted ∼ ◦ ∼′ - is the relation
over X and Z defined by ∼ ◦ ∼′= {(x, z) : ∃y∈Y x ∼ y ∧ y ∼′ z}. Consider two relations:

--> def ~1 '((1 2) (2 3) (3 4) (4 5) (5 6))

--> def ~2 '((2 4) (3 6) (4 8) (5 10) (6 12))

The following function can be used to compute the composition of two relations:

--> defun r-compose (r1 r2) (

... let* (r2x \:car r2)

... \flatten \:(lambda x

... \let* ((a b) x)

... \:$(cons a)@:cadr r2$[find-idx r2x b]) r1)

--> r-compose ~1 ~2

[(1 4)

(2 6)

(3 8)

(4 10)

(5 12)]

Both of the relations do not need to be injective:

--> def ~1 '((1 1) (2 4) (3 9))

--> def ~2 '((1 1) (1 -1) (4 2) (4 -2) (9 3) (9 -3))

--> r-compose ~1 ~2

[(1 1)

(1 -1)

(2 2)

(2 -2)

(3 3)

(3 -3)]

An identity relation (the identity element for relation composition) for n ∈ N up to m is given as
:[⌿⍧ #0 #0]∘⍳ m.

If ∼ is a binary relation over sets X and Y , then the converse of ∼ is the relation ∼T over Y
and X defined by ∼T= {(y, x) : x ∼ y}. Iff5 a relation is symmetric it is also its own converse
- for example, = and /= are their own converses. The relations < and > are mutually converses of
each other. The converse of a relation can be trivially computed using :reverse. In the monoid
of binary endorelations on a set (with the binary operation on relations being the composition of
relations), the converse relation does not satisfy the definition of an inverse from group theory. The
converse relation does satisfy the (weaker) axioms of a semigroup with involution:

(
LT

)T
= L and

(L ◦ R)T = RT ◦ LT (distributive law). R is a symmetric binary relation over X and Y iff RT = R,
thus R = {(a, b) : aRb ⇔ bRa}, so (a, b) ∈ R ⇒ (b, a) ∈ R. This can be easily checked for using

5If and only if.

Chapter 3. Functional data structures 70

[same-elements #0 :reverse]. Uniqueness properties (injectivity and functionality) are checked for
using, respectively, [same-elements unique #0]@:car and [same-elements unique #0]@:cadr.

Homogenous relations have the following properties of particular interest:

• Reflexivity: x ∼ x for all x ∈ X - def reflexive? all@:(lift =).

• Irreflexivity: x ∼ x does not hold for any x ∈ X - def irreflexive? none@:(lift =).

• Symmetric: x ∼ y implies y ∼ x - def symmetric? [same-elements #0 :reverse].

• Antisymmetric: x ∼ y and y ∼ x implies x = y - in other words, unless x = y then both x ∼ y
and y ∼ x cannot hold - [not-same-elements #0 :reverse]@$(filter \lift /=).

• Asymmetric: if x ∼ y then y ∼ x does not hold - in other words, the relation must be antisym-
metric and irreflexive.

• Transitive: if x ∼ y and y ∼ z then x ∼ z - def transitive? [all@:^in? tie@#0 \r-

compose #0 #0].

The transitive closure of a binary relation ∼ on a set X is the smallest relation on X that contains
∼ and is transitive. ”Smallest” is chiefly taken in its usual sense, of having the fewest related pairs. To
begin solving this problem, start by turning the relation into a matrix using where-mask. The next step
is converging a function that finds a transitive closure using inner product with or as the accumulation
part and and as the mapping part. The function transitive-closure is defined as follows:

--> ; Pad a matrix with zeroes to make it square.

--> ⍥← sqm m (○⊢¨

... (○← xd (⍴ \⍎ m))

... (○← yd (⍴ m))

... (↕¨

... ((< xd yd) \:(λ x \⍠ x \↑ (- yd xd) '(0)) m)

... ((> xd yd) \⍠ m \⍉↩ (- xd yd) \⌿⍧ \↑ xd '(0))

... ((= xd yd) m)))

--> ; Compute the transitive closure.

--> ⍥← transitive-closure x (○⊢¨

... (○← x \sqm \⍸¯¹ x)

... (⍥← ∨○∧ m \$(⌿⊙← ∨)%[1] \⌼ ∧ m \⎕⍉ m)

... (⍸ \→≡ [∨ ∨○∧ #0] x))

Implementing the reflexive closure - the smallest relation on X that contains ∼ and is reflexive - is
considerably simpler and accomplished by :[tie #0 #0]@unique@flatten.

3.7. Graphs
A graph is a data structure consisting of a set of objects (vertices) in which some pairs of the objects are
related (linked). It is important to recognise how graphs are more general than trees - a tree is merely
a connected undirected acyclic graph. The following elementary properties of graphs are considered:

• A graph is either directed or undirected. This property specifies whether the links between
vertices are ordered or not.

• A graph may be declared to contain self-loops. This property specifies whether a vertex may be
linked to itself.

Chapter 3. Functional data structures 71

• A graph may be declared to contain multiple edges. This property specifies whether a vertex
may be linked to another vertex more than once.

• A graph may be weighted, in which case each link is assigned a weight (a real number represented
as a machine word; i.e. not arbitrary precision).

Depending on the declared properties of the graph, certain graphs are assigned names:

• An undirected, unweighted graph with no self-loops and no multiple edges is called a simple
graph.

• An undirected, unweighted graph with no self-loops and multiple edges is called a multigraph.

• An undirected, unweighted graph with that allows for self-loops and multiple edges is called a
pseudograph.

Directed and weighted variants of these graphs exist, but they do not have unique names. For
instance, a directed and weighted graph that allows for multiple edges but no self-loops will be referred
to as a directed and weighted multigraph.

3.7.1. Graph constructors

Constructing a graph is done using the following KamilaLisp functions, all of which have similar inter-
faces explained later on in the book:

• graph:simple - constructs a simple graph.

• graph:simple-weighted - constructs a weighted simple graph.

• graph:simple-directed - constructs a directed simple graph.

• graph:simple-directed-weighted - constructs a directed and weighted simple graph.

• graph:multi - constructs a multigraph.

• graph:multi-weighted - constructs a weighted multigraph.

• graph:multi-directed - constructs a directed multigraph.

• graph:multi-directed-weighted - constructs a directed and weighted multigraph.

• graph:pseudo - constructs a pseudograph.

• graph:pseudo-weighted - constructs a weighted pseudograph.

• graph:pseudo-directed - constructs a directed pseudograph.

• graph:pseudo-directed-weighted - constructs a directed and weighted pseudograph.

Constructing a graph requires specifying the edges and vertices:

--> def my-graph \graph:simple

... '(kamila lena julia anna diana)

... '((diana anna) (kamila julia) (julia lena) (lena anna))

Graph(

Vertices=[kamila, lena, julia, anna, diana],

Edges=[(diana => anna), (kamila => julia), (julia => lena), (lena => anna)]

)

Chapter 3. Functional data structures 72

3.7.2. Elementary graph operations

The following elementary operations are defined on all graphs, regardless of their type.

.has-vertex? - checks whether a vertex is present in the graph.

--> my-graph.has-vertex? 'kamila

1

--> my-graph.has-vertex? 'jacob

0

.has-edge? - checks whether an edge is present in the graph.

--> my-graph.has-edge? '(lena anna)

1

--> my-graph.has-edge? '(lena kamila)

0

.edges-of - returns all the edges associated with a vertex.

--> my-graph.edges-of 'anna

[(diana anna)

(lena anna)]

.incoming-edges-of - returns the set of all edges incoming into the specified vertex. This operation
is only useful for directed graphs. For undirected graphs, it is equivalent to .edges-of.

.outgoing-edges-of - returns the set of all edges outgoing from the specified vertex. This operation
is only useful for directed graphs. For undirected graphs, it is equivalent to .edges-of.

.adjoin-vertex - adds a vertex to the graph.

--> def graph2 \my-graph.adjoin-vertex 'rose

Graph(

Vertices=[kamila, lena, julia, anna, diana, rose],

Edges=[(diana => anna), (kamila => julia), (julia => lena), (lena => anna)]

)

.adjoin-edge - adds an edge to the graph.

--> def graph2 \graph2.adjoin-edge '(rose lena)

Graph(

Vertices=[kamila, lena, julia, anna, diana, rose],

Edges=[(diana => anna), (kamila => julia), (julia => lena),

(lena => anna), (rose => lena)]

)

.degree-of - returns the degree of a vertex. The degree of a vertex is the number of edges incident to
it.

--> graph2.degree-of 'lena

3

Chapter 3. Functional data structures 73

.minus-edge and .minus-vertex operate in a similar fashion to .adjoin-edge and .adjoin-vertex,
but they remove the specified edge or vertex from the graph. If the specified edge or vertex is not
present in the graph, the graph is returned unchanged.

.adjoin-edge-set, .adjoin-vertex-set, .minus-vertex-set, .minus-edge-set perform operations
analogical to the ones described above, but work in batches by adjoining multiple edges or vertices, or
removing multiple edges or vertices.

3.7.3. Breadth-First and Depth-First Search

Define a graph object that will be subsequently searched:

--> def my-graph \graph:simple-directed

'(a b c d e f g h i j k)

'((a b) (a c) (a d) (b e) (b f) (e g) (e h) (d i) (i j) (i k))

Which is represented as the following tree:
A

B

E

G H

F

C D

I

J K
Breadth-first and depth-first search functions require three or four arguments. The first argument

is the graph to be searched. The second argument is the vertex from which the search will start. The
third argument is a function that will be applied to each vertex as it is visited. The fourth argument
is optional and is a function that will be applied to each edge as it is visited.

The pseudocode for the search functions is as follows:

vertex_iterator = ...

result = '()

while(vertex_iterator.hasNext()):

vertex = vertex_iterator.next()

result, stop = visit(vertex, result)

if(stop)

break

return result

Breadth-first and depth-first search starting from the edge 'a shows the following access sequences:

--> reverse@graph:bfs my-graph 'a [tie cons 0] 'nil

(a b c d e f i g h j k)

--> reverse@graph:dfs my-graph 'a [tie cons 0] 'nil

(a d i k j c b f e h g)

In the breadth-first case, incidentally the edges are traversed in the same order in which they were

Chapter 3. Functional data structures 74

defined. In the depth-first case, the algorithm descends to the deepest vertices before visiting the next
sibling:

1

7

9

11 10

8

6 2

3

5 4

Chapter 4

Applied mathematics

This chapter describes the usage of KamilaLisp to achieve various results in applied mathematics.

4.1. Polynomials
KamilaLisp does not support a native polynomial data type, however, throughout the section a litte-
endian representation is assumed, such that for instance the polynomial P (x) = 2x2 + 3x + 1 is
represented as the list (1, 3, 2).

4.1.1. Numerically evaluating rational sums and integrals

Suppose that we want to compute the values of the following expressions, given some polynomial
functions P (x) and Q(x):

∞∑
i=0

P (i)

Q(i)∫ ∞

0

P (x)

Q(x)
dx

The problem is that these expressions may not converge, or may converge very slowly. Precisely,
degP (x)− degQ(x) < −1 is a sufficient condition for divergence. To demonstrate a particular case of
performing the summation, consider the following:

∞∑
k=1

1

k2 − a

where a is a constant. The following equalities hold (the first equality: only for
√
a ∈ C \ Z):

∞∑
k=1

1

k2 − a
=

1−
√
aπ cot(

√
aπ)

2a
=

1

2
√
a

(
ψ
(
1 +

√
a
)
− ψ

(
1−

√
a
))

To attempt at understanding why is this happening, recall the following identity due to Euler (1770)
for z ∈ C \ Z:

π cot(πz) = z−1 +

∞∑
v=1

2z

z2 − v2

A concise proof using Mittag-Leffler’s theorem follows. Given bn as the residues:

f(z) = f(0) +

∞∑
n=1

bn

(
1

z − zn
+

1

zn

)
= f(0) +

∞∑
n=1

zbn
zn(zn − z)

Chapter 4. Applied mathematics 76

Using the contour integral where CN is a circle enclosing first N poles of f :

IN =

∮
CN

f(ω)dω

ω(ω − z)

Using the residue theorem we find:

IN = −2πi
f(0)

f(z)
+ 2πi

f(z)

z
+

N∑
n=1

2πibn
zn(zn − z)

Consider cot z − z−1 to remove a singularity. bn is found using the residue theorem as follows:

bn = lim
z→nπ

(z − nπ) cot z = lim
z→nπ

(z − nπ)
z cos z − sin z

z sin z
= 1

Hence:

cot z − z−1 =

N∑
n=1

1

z − nπ
+

1

nπ
+

1

z + nπ
− 1

nπ

Substitute and rearrange:

π cot(πz) = z−1 +
N∑

n=1

(
1

z − n
+

1

z + n

)
= z−1 +

N∑
n=1

2z

z2 − n2

Knowing where the first part of the equality comes from, the next logical step is reasoning about the
second equality:

1−
√
aπ cot(

√
aπ)

2a
=

1

2
√
a

(
ψ
(
1 +

√
a
)
− ψ

(
1−

√
a
))

Use the recurrence relation of the digamma function once:

1−
√
aπ cot(

√
aπ)

2a
=

1

2
√
a

(
1√
a
+ ψ

(√
a
)
− ψ

(
1−

√
a
))

Now it is possible to apply the digamma reflection formula given as follows:

ψ(1− x)− ψ(x) = π cotπx

The problem hence reduces to:

1

2
√
a

(
1√
a
− π cotπ

√
a

)
=

1

2
√
a

(
1−

√
aπ cotπ

√
a√

a

)
=

1−
√
aπ cotπ

√
a

2a

The general algorithm for convergent series implemented below is as follows. Consider polynomials
P (x) and Q(x) that are not a natural power of another polynomial. Denote the roots of the polynomial
Q(x+1) (obtained using the most convenient means; counting multiplicity) as R0 . . . Rm. The following
equality holds if P (x) = 1:

∞∑
n=1

1

Q(n)
= −

∑
ω∈R

ψ(−ω)
Q′(ω + 1)

If P (x) 6= 1 (i.e. the rational function is not an inverse of some polynomial), the formula is as
follows:

∞∑
n=1

P (n)

Q(n)
= −

∑
ω∈R

P (ω + 1)ψ(−ω)
Q′(ω + 1)

Chapter 4. Applied mathematics 77

To start, define a few helper functions - evaluating a polynomial at a point, computing the symbolic
derivative of a polynomial and substituting x + 1 into the polynomial to transform the litte-endian
coefficient list:

(def polyevl

[(inner-product cmplx64:+ cmplx64:*) #0 ^cmplx64:**&[#0 range@tally]])

(def polyderv cdr@[* #0 range@tally])

(defun poly+1 (c)

(let-seq

(def bin-mat (:[:^binomial #0 \range $(+ 1)]@range@tally c))

(def coeff-mat (:$(take (tally c)) (* c bin-mat)))

(:$(foldl1 +)@transpose coeff-mat)))

The function is trivially defined as follows:

(defun rsum (p q) (let-seq

(def q+1 (poly+1 q))

(def p+1 $(polyevl (poly+1 p)))

(def q+1p $(polyevl (polyderv q+1)))

(def R (cmplx64:solve q+1))

(def V [/ [* p+1 cmplx64:digamma@-] q+1p])

(cmplx64:neg (foldl + 0 (:V R)))))

The integral case is defined similarly; except the digamma factor is replaced with a logarithm factor

such that we sum P (w) log(x− w)

Q′(w)
for roots w; the rat-int function returns the numeric antiderivative

of the specified rational function.

(defun rat-int (p q)

(let-seq

(def qp \polyderv q)

(def qr \cmplx64:solve q)

(def q' \:$(polyevl qp) qr)

(λ x \-@foldl + 0 \^/ q' \:(λ r \^polyevl r * p \ln@- x r) qr)))

Using rsum we estimate the value of
∞∑
k=1

1

k2 − 2
as follows:

--> rsum '(1) '(-2 0 1)

-0.056810407700620236J4.879779454488352E-17

The result is correct to approximately 17 decimal places, as seen by the imaginary part of the result,
which in reality is zero. To compute the value of this sum, use the previously proven identity:

∞∑
k=1

1

k2 − 2
=

1−
√
2π cot(

√
2π)

4
=

1

2
√
2

(
ψ
(
1 +

√
2
)
− ψ

(
1−

√
2
))

Verifying the result using KamilaLisp yields:

Chapter 4. Applied mathematics 78

--> flt64:* 0.25 (flt64:- 1 ([flt64:* #0 flt64:cot] (flt64:pi@flt64:sqrt 2)))

-0.056810407700620236

--> (flt64:/

... (foldl1 - (:flt64:digamma ([tie flt64:+ flt64:-] 1 (flt64:sqrt 2))))

... ([flt64:* #0 flt64:sqrt] 2))

-0.05681040770062016

For a practical application of this property, consider the Catalan constant defined as follows:

K =

∞∑
k=0

(−1)k

(2k + 1)2

Splitting the even and odd terms yields the following two sums:

K = 1 +

∞∑
n=1

1

(4n+ 1)2
− 1

9
−

∞∑
n=1

1

(4n+ 3)2

Before the sum can be computed, a limitation of the algorithm must be taken care of. The polyno-
mial is modified by adding and subtracting a known constant factor and taking the average:

--> (defun rsum-avg (p q c)

... (flt64:* 0.5 (foldl1 flt64:+

... (:rsum (tie p) (:cons ([tie flt64:+ flt64:-] (car q) c) (tie@cdr q))))))

Hence the Catalan constant is defined in KamilaLisp using rsum-avg as follows:

--> (def K (flt64:+ (/ 8 9)

... (- (rsum-avg '(1) '(1 8 16) 0.0001) (rsum-avg '(1) '(9 24 16) 0.0001))))

0.9159655942089728

The value obtained has 11 correct digits.

4.1.2. Polynomial discriminants

Let P (x) denote general monic polynomial of degree n i.e. of the form

P (x) = (x− x1)(x− x2) · · · (x− xn)

Let V (x1, x2, · · · , xn) denote the Vandermonde deteminant in x1, x2, · · · , xn

V (x1, x2, · · · , xn) =
∏

1≤i<j≤n

(xj − xi)

The discriminant of P (x) is denoted by ∆P and it is defined as:

∆P = V (x1, x2, · · · , xn)2 =
∏

1≤i<j≤n

(xj − xi)
2

The algorithm starts by computing the cartesian product of the roots of the polynomial and sub-
tracting them. Then, a triangular matrix is built as a mask for the product of the roots. After
multiplying the product and the mask, the result is flattened and multiplied together:

Chapter 4. Applied mathematics 79

--> defun Δ (p) (re (foldl1 * (flatten@replicate

... ([(outer-product <) #0 #0] (range@tally p))

... (** (outer-product - p p) 2))))

4.2. Integer arithmetic coding
Integer arithmetic coding is a form of entropy encoding used in lossless data compression. A string of
characters is usually represented using a fixed number of bits per character (e.g. using ASCII). When a
string is compressed using arithmetic coding, frequently used characters will be stored using fewer bits
and less frequently occurring characters will be stored with more bits, resulting in fewer bits used in
total. Unlike Huffman coding presented previously in the book, integer arithmetic coding is optimal.

The algorithm behind integer arithmetic coding is as follows:

• Pick a large integer which is a multiple of 4 and call it M (the maximum).

• Define the interval [L,H) = [0,M) and k = 0 (the underflow count).

• Perform underflow expansion: While M/4 ≤ L ≤ M/2 ≤ H ≤ 3M/4, update the interval by
reassigning L to 2L−M/2 and H to 2H −M/2.

• Perform rescaling: If H ≤ M/2, then double L and H, add 01k to the code word, reset k to 0
and go back to the underflow expansion step.

• Perform rescaling: If L ≥ M/2, then update the interval by reassigning L as 2L −M and H as
2H −M . Add 10k to the code word, reset k to 0 and go back to the underflow expansion step.

• If all symbols are encoded:

– If L < M/4 add 01k+1 to the code word.
– Otherwise add 10k+1 to the code word.

and terminate.

• Encode the symbol by reassigning the range as follows:

[L,H) ⇒

L+

 i−1∑
j=1

pj(H − L)

 , L+

 i∑
j=1

pj(H − L)



Chapter 5

Programming language theory

5.1. Lexical analysis

5.2. Parsing techniques

Chapter 6

KamilaLisp as a shell

6.1. Operating system information

6.2. File management

6.3. Process management

Chapter 7

Symbolic manipulation

7.1. Polynomials

7.2. Mathematical functions

7.3. Limits

7.4. Derivatives

7.5. Indefinite integration

7.6. Series expansion

Chapter 8

Concurrent programming and
networking

8.1. Tasks and daemons

8.2. Message passing

8.3. Sockets

8.4. HTTP servers

Chapter 9

Codecs and data formats

9.1. XML

9.2. JSON

9.3. CSV

9.4. bzip2

9.5. gzip

9.6. xz

9.7. lz4

9.8. base64

9.9. zip

9.10. tar

Appendix A - primitive functions

	Initial considerations
	Programs and variables
	Functions and lambda expressions
	Conditional expressions and comparisons
	Recursive functions
	Function composition
	Partial application and mu-recursive functions
	Iteration
	Exceptions

	Elementary data structures
	Basic list operations
	Sorting, searching and indexing
	Rank
	Elementary higher order functions
	State management
	Folding and scanning
	Products and two-dimensional convolution
	Searching and partitioning
	Pattern matching
	Sorting and permutations
	Using glyphs
	Strings and regular expressions

	Functional data structures
	Combinator calculi
	Church encoding
	Natural numbers
	Boolean domain
	Natural number division and comparisons
	Pairs
	Lists

	Sets
	Queues
	Dictionaries
	Relations
	Graphs
	Graph constructors
	Elementary graph operations
	Breadth-First and Depth-First Search

	Applied mathematics
	Polynomials
	Numerically evaluating rational sums and integrals
	Polynomial discriminants

	Integer arithmetic coding

	Programming language theory
	Lexical analysis
	Parsing techniques

	KamilaLisp as a shell
	Operating system information
	File management
	Process management

	Symbolic manipulation
	Polynomials
	Mathematical functions
	Limits
	Derivatives
	Indefinite integration
	Series expansion

	Concurrent programming and networking
	Tasks and daemons
	Message passing
	Sockets
	HTTP servers

	Codecs and data formats
	XML
	JSON
	CSV
	bzip2
	gzip
	xz
	lz4
	base64
	zip
	tar

	Appendix A

